

Fuji Electric Co.,Ltd.

ED&C · Drive Systems Company

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome Shinagawa-ku, Tokyo 141-0032, Japan Phone: +81-3-5435-7139 Fax: +81-3-5435-7460

CONTENTS

1. Stand	ard Specifications	1-2
1.1 FRI	ENIC5000G11S/P11S Series	1-2
1.1.1	Three-phase 200V FRENIC5000G11S Series (JE)	1-2
1.1.2	Three-phase 400V FRENIC5000G11S Series (JE)	1-3
1.1.3	Three-phase 200V FRENIC5000P11S Series (JE)	1-4
1.1.4	Three-phase 400V FRENIC5000P11S Series (JE)	1-5
1.1.5	Three-phase 400V FRENIC5000G11S Series (EN)	1-6
1.2 FV	R-E11S Series	1-7
1.2.1	Single-phase 200V FVR-E11S Series (JE)	1-7
1.2.2	Three-phase 400V FVR-E11S Series (JE)	1-8
1.2.3	Three-phase 200V FVR-E11S Series (JE)	1-8
1.2.4	Three-phase 400V FVR-E11S Series (EN)	1-9
1.2.5	Single-phase 200V FVR-E11S Series (EN)	1-9
2. Comn	non Specifications	1-10
2.1 Out	line of common specifications	1-10
2.1.1	FRENIC5000G11S/P11S Series	1-10
2.1.2	FVR-E11S Series	1-14
	tective functions	
2.2.1	FRENIC5000G11S/P11S Series	1-16
	FVR-E11S Series	
	oction settings	
	FRENIC5000G11S/P11S Series	
	FVR-E11S Series	
_	Diagram	
3.1 FRI	ENIC5000G11S/P11S Series	
3.1.1	Wiring diagram before shipment from factory (JE)	
3.1.2	Basic wiring diagram (JE)	
3.1.3	Wiring diagram using options (JE)	
3.1.4	Wiring diagram before shipment from factory (EN)	
3.1.5	Basic wiring diagram (EN)	
	Wiring diagram using options (EN)	
	R-E11S Series	
3.2.1	Wiring diagram before shipment from factory (JE)	
3.2.2	Basic wiring diagram (JE)	
3.2.3	Wiring diagram using options (JE)	
3.2.4	Wiring diagram before shipment from factory (EN)	
3.2.5	Basic wiring diagram (EN)	
3.2.6	Wiring diagram using options (EN)	
	nal	
	minal functions	
4.1.1	FRENIC5000G11S/P11S Series	1-62

This catalog covers inverters of both Asian version and European version. Each version is distinguished by the inverter type suffix. (Asian version : JE, European version : EN or EV)

ii Contents

4.1.2 F	VR-E11S Series	1-66
4.2 Main	circuit and control circuit terminals	1-68
4.2.1 T	erminal block arrangement	1-68
4.2.2 N	Main circuit terminal	1-70
4.2.3 C	Control circuit terminal	1-74
Chapter 2	Operation	
-	icy Control Operation	2-2
•	s of frequency control signal	
	acy and resolution	
	Panel	
2.1 FREN	IIC5000G11S/P11S Series	2-4
2.2 FVR-I	E11S Series	2-6
	n Explanation	
	amental Functions	
3.2 Exten	sion Terminal Functions	2-18
3.3 Contr	ol Functions of Frequency	2-28
	Parameters	
3.5 High I	Performance Functions	2-35
_	ative Motor Parameters	
	d RS485 Interface	
	ıe	
4.1.1 F	eatures	2-47
	unction overview	
	mission specification	
	ection	
	Connection method	
	3S485	
	xample of connection	
	Example of noise prevention	
	mission method	
	ransmission frame	
	ield description	
	Procedure on the host side	
	xample of communication	
	Communication error	
	ions specific for communication	
	Command data	
	Operation command data	
	unction data	
	Monitoring data	
	ion data format	
	ist of function data format	
	Pata format specification	
	geover of communications	
	Changeover method for communication valid/invalid	
	ink function (operation selection)	
	Coexistence of link (option) and RS485 communication	

4.8 Response time	. 2-72
4.8.1 Response interval time	. 2-72
4.8.2 Time of receiving preparation completion	. 2-73
4.9 Function	. 2-73
4.10 Troubleshooting	. 2-74
4.11 Appendix	. 2-75
4.11.1 Communication level converter	. 2-75
4.11.2 ASCII code list	. 2-75
4.11.3 Example of a control program	. 2-76
5. Using Lifetime Forecast Functions	
5.1 Contents of lifetime forecast functions	
5.2 How to check lifetime forecast information	. 2-77
5.3 Measuring conditions of lifetime	. 2-78
Chapter 3 Peripheral Equipment	
Inverter Input Current	3-2
Circuit Breakers and Magnetic Contactors	
3. Wire Size	
3.1 FRENIC5000G11S/P11S Series	
3.2 FVR-E11S Series	
3.3 Allowable current of insulation wire	
Braking Unit and Braking Resistor	
4.1 FRENIC5000G11S/P11S Series	
4.2 FVR-E11S Series	
Braking Unit and Braking Resistor (10%ED)	
5.1 FRENIC5000G11S/P11S Series	
5.2 FVR-E11S Series	
Rated Sensitive Current of ELCB	
7. Input Circuit Noise Filter (EMC Compliance Filter)	
7.1 FRENIC5000G11S/P11S Series	
7.2 FVR-E11S Series	
8. Output Curcuit Noise Filter (OFL-□□-2/4)	
9. Output Curcuit Noise Filter (OFL-□-4A)	
10. DC REACTOR (DCR)	
10.1 FRENIC5000G11S/P11S Series	
10.2 FVR-E11S Series	
11. AC REACTOR (ACR)	
12. Ferrite Ring for Reducing Radio Noise (ACL)	
13. Power Regenerative PWM Converter (RHC)	
Chanter 4 Optimal Type Salastian	
Chapter 4 Optimal Type Selection	4.0
Inverter and Motor Selection	
1.1 Motor output torque characteristics	
1.2 Selection procedure	
1.3 Selection calculation expressions	
1.3.1 Load Torque during constant speed running 1.3.2 Acceleration and deceleration time calculation	
1.3.2 Acceleration and deceleration time calculation	
1.3.4 Appendix (calculation for other than in SI Unit)	
1.V. = - CVVVIVIA VOIVUIGIUUI IVI VIIIGI IIIGII III VI VIIII	・サーバノ

2. E	Braking Unit and Braking Resistor Selection	4-11
2.1	Selection procedure	4-11
2.2	Notes on selection	4-11
Chan	oter 5 Option	
•	Options	5-2
1.1	Optional control cards	
1.2	Other exclusive options	
1.3	Datailed specifications	
	Optional Peripheral Equipment	
2.1	Optional peripheral equipment (FRENIC5000G11S/P11S, JE version)	
2.2	Optional peripheral equipment (FRENIC5000G11S, EN version)	
2.3	Optional peripheral equipment (FVR-E11S, JE version)	
2.3	Optional peripheral equipment (FVR-E11S, EN version)	
2.5	Specifications and dimensions	
Char	stor C. Application Idea	
-	oter 6 Application Idea Setting Items and Applications	6.0
	RENIC5000G11S/P11S Series	
2.1	Using with Aeration Tank Blowers	
2.2	Using with Multi-storied Automated Warehouses	
2.3	Using with Automated Parking Garages	
2.4	Using with Vertical Circulation type Parking Facility	
2.5	Using with Bread Dough Mixers	
2.6	Using with Commercial-use Washing Machines	
2.7	Using with Belt Conveyors	
2.8	Using with Grinding Machines	
2.9	Using with Fans for Air Conditioning Unit (1)	
2.10	3 - (,	
2.11	·	
	Using with Line/Inverter Changeover Operation	
	VR-E11S Series	
3.1	Using with Belt Conveyors	
3.2	Using with Multi-storied Automated Warehouses	
3.3	Using with Cold/Warm Water Pumps	
3.4	Using with Fans for Air Conditioning Unit (1)	
3.5	Using with Fans for Air Conditioning Unit (2)	
3.6	Using with Centrifngal Separators Spin Dryers	6-40
Chap	oter 7 Glossary	
1. S	Standard Specifications	7-2
2. C	Common Specificationds	7-4
Chap	oter 8 Appendix	
•	ndix 1. Advantageous Use of Inverters (with regard to Electrical Noise)	
1.1	Effect of inverters on other devices	
	.1.1 Effect on AM radios	
	.1.2 Effect on telephones	
1	.1.3 Effect on proximity limit switches	8-2

1.1.4	Effect on pressure sensors	8-2
1.1.5	Effect on position detectors	
	(pulse generators; PGs, or pulse encoders)	8-2
1.2 No	ise	8-2
1.2.1	Inverter noise	8-2
1.2.2	Types of noise	8-3
1.3 No	ise prevention measures	8-5
1.3.1	Noise prevention treatments prior to installation	8-5
1.3.2	Implementation of noise prevention measures	8-5
1.3.3	Specific examples	8-8
Appendix 2	2. Effect on Insulation of General-purpose	
	Motor Driven with 400V Class Inverter	8-11
2.1 Op	erating principle of inverter	8-11
2.1.1	Main circuit configuration of inverter	8-11
2.1.2	Control method of inverter	8-11
2.2 Ge	nerating mechanism of surge voltages	8-11
2.3 Eff	ect of surge voltages	8-12
2.4 Co	untermeasures against surge voltages	8-12
2.4.1	Method to use motors with enhanced insulation	8-12
2.4.2	Method to suppress surge voltages	8-12
2.5 Re	garding existing equipment	8-13
2.5.1	In case of motor being driven with 400V class inverter	8-13
2.5.2	In case of existing motor driven newly with 400V class inverter	8-13
Appendix 3	Example Calculation of Energy Savings	8-14
2.1 Ca	Iculating condition	8-14
2.2 Ca	Iculation of shaft driving power	8-14
2.3 Ca	Iculation of energy savings	8-14
Appendix 4	4. Inverter Generating Loss	8-15

Contents

1. Standard Specifications	
1.1 FRENIC5000G11S/P11S Series	
1.1.1 Three-phase 200V FRENIC5000G11S Series (JE)	1-2
1.1.2 Three-phase 400V FRENIC5000G11S Series (JE)	
1.1.3 Three-phase 200V FRENIC5000P11S Series (JE)	1-4
1.1.4 Three-phase 400V FRENIC5000P11S Series (JE)	
1.1.5 Three-phase 400V FRENIC5000G11S Series (EN)	1-6
1.2 FVR-E11S Series	
1.2.1 Single-phase 200V FVR-E11S Series (JE)	1-7
1.2.2 Three-phase 400V FVR-E11S Series (JE)	
1.2.3 Three-phase 200V FVR-E11S Series (JE)	
1.2.4 Three-phase 400V FVR-E11S Series (EN)	
1.2.5 Single-phase 200V FVR-E11S Series (EN)	
1.2.5 Single-phase 2007 1 VII-LTTO Series (LIV)	1-3
2. Common Specifications	1-10
2.1 Outline of common specifications	
2.1.1 FRENIC5000G11S/P11S Series	
2.1.2 FVR-E11S Series	
2.2 Protective functions	
2.2.1 FRENIC5000G11S/P11S Series	
2.2.2 FVR-E11S Series	
2.3 Function settings	
2.3.1 FRENIC5000G11S/P11S Series	
2.3.2 FVR-E11S Series	
2.0.2 1 11 21 10 00103	. 1 20
3. Wiring Diagram	1-28
3.1 FRENIC5000G11S/P11S Series	
3.1.1 Wiring diagram before shipment from factory (JE)	
3.1.2 Basic wiring diagram (JE)	
3.1.3 Wiring diagram using options (JE)	
3.1.4 Wiring diagram before shipment from factory (EN)	
3.1.5 Basic wiring diagram (EN)	
3.1.6 Wiring diagram using options (EN)	
3.2 FVR-E11S Series	
3.2.1 Wiring diagram before shipment from factory (JE)	
3.2.2 Basic wiring diagram (JE)	1-57
3.2.3 Wiring diagram using options (JE)	1-58
3.2.4 Wiring diagram before shipment from factory (EN)	1-50
3.2.5 Basic wiring diagram (EN)	
3.2.6 Wiring diagram using options (EN)	1_61
5.2.0 Willing diagram using options (Liv)	. 1-01
4. Terminal	1-62
4.1 Terminal functions	
4.1.1 FRENIC5000G11S/P11S Series	
4.1.2 FVR-E11S Series	
4.2 Main circuit and control circuit terminals	
4.2.1 Terminal block arrangement	
4.2.1.1 FRENIC5000G11S/P11S Series	1-68
4.2.1.2 FVR-E11S Series	
4.2.1.2 FVH-E113 Series	
4.2.2.1 FRENIC5000G11S/P11S Series	
4.2.2.2 FVR-E11S Series	
4.2.3 Control circuit terminal	
4.2.3.1 FRENIC5000G11S/P11S Series	
4.2.3.1 FRENIC5000G115/P115 Series	
4.2.3.2 FVN-E113 361165	1-/5

1. Standard Specifications

1. Standard Specifications

FRENIC5000G11S/P11S Series

1.1.1 Three-phase 200V FRENIC5000G11S Series (JE)

Type FRN		-	Item		Ī								Specifi	cation	s							
Naminal applied motor NW 0.2 0.4 0.75 0.5 0.2 0.3 0.3 0.5	Type	FRN□□□		2JE	0.2	0.4	0.75	1.5	2.2	3.7	5.5		-			22	30	37	45	55	75	90
Rated capacity *1) KVA 0.57 1.1 9 3.0 4.1 6.4 9.5 12 17 22 28 33 4.3 55 6.8 81 107		applied m	otor	kV	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90
Name		i i		1) kV/	0.57	1.1	1.9	3.0	4.1	6.4	9.5	12	17	22	28	33	43	55	68	81	107	131
Passe, Voltage Frequency 150% of rated current for 1min. 150% of rated current for 1min. 150% of rated current for 10.5s 150% of rated current for 0.5s		Rated vo	oltage	2)	/ 3-pha	ase	200V	/50Hz	20	0, 220	, 230V	/60Hz					"					
Rated frequency	Output	Rated cu	urrent '	3)	1.5	3.0	5.0	8.0	11	17	25	33	46	59	74	87	115	145	180	215	283	346
Rated frequency	ratings	Overloa	d capab	lity	150%	of rat	ed curr	ent for	1min.					•			150%	of rat	ed curr	ent for	1min.	
Phases, Voltage, Frequency 3-phase 200 to 230V 50/60Hz							ed curr	ent for	0.5s								180%	of rat	ed curr	ent for	0.5s	
Voltage frequency variations Voltage 1-10 to -15% (Voltage unbalance *4) : 2% or less) Frequency :+5 to -5%					+												11					
Momentary voltage dip capability When the input voltage is 165V or more, the inverter can be operated continuously. When the input voltage drops below 165V from rated voltage, the inverter can be operated for 15ms. The smooth recovery method is selectables.		Phases,	Voltage	, Frequency	3-pha	ase 2	00 to 2	230V	50/60H	Ηz							3-phase				230V/50	Hz) *11)
Setting Sett		Voltage	/ freque	ncy variations	Volta	ge : +1	0 to -1	5% (\	/oltage	unbala	ance *4	1):2%	or less	s) Fre	quenc	y :+5 t	o –5%					
Rated current *6 with DCR			ary volt	age dip capabili	-1			_									-					
Required power supply RVA 0.4 0.6 1.1 2.0 2.9 4.9 6.9 9.4 14 19 23 28 38 47 57 69 9.5		*5)										m rate	d volta	ge, the	inverte	er can	be ope	rated	for 15m	ns.		
Required power supply kVA 0.4 0.6 1.1 2.0 2.9 4.9 6.9 9.4 14 19 23 28 38 47 57 69 95		Rated cu	urrent *6	(with DCR)	0.94	1.6	3.1	5.7	8.3	14.0	19.7	26.9	39.0	54.0	66.2	78.8	109	135	163	199	272	327
Capacity '7) KVA 0.4 0.6 1.1 2.0 2.9 4.9 6.9 9.4 14 19 23 28 88 47 57 6.9 9.5 9.5				(without DCF	1.8	3.4	6.4	11.1	16.1	25.5	40.8	52.6	76.9	98.5	117	136	168	204	243	291	-	-
Setting Base frequency 25 to 400Hz			•	supply kV/	0.4	0.6	1.1	2.0	2.9	4.9	6.9	9.4	14	19	23	28	38	47	57	69	95	114
Setting Base frequency 25 to 400Hz		Jupatity		imum frequenc	/ 50 to	400Hz	<u>'</u>			<u> </u>				<u> </u>		I	11		1		I	
Starting frequency 0.1 to 60Hz, Holding time: 0.0 to 10.0s 0.75 to 15kHz 0.75 to 15kHz		Setting		•																		
Carrier frequency *8 0.75 to 15kHz			_		+			na time	e: 0.0 t	o 10.0s												
Accuracy (Stability)											-										0.75 to	10kHz
Setting resolution	Output	Accurac			4			±0.2%	of Ma	ximum	freque	ency (a	t 25±1	0°C)								
Digital setting: 0.01Hz at Maximum frequency of up to 99.99Hz (0.1Hz at Maximum frequency of 100Hz and above) LINK setting: Selects from the following two items. 1/20000 of Maximum frequency ex.) 0.003Hz at 60Hz, 0.006Hz at 120Hz, 0.02Hz at 400H 1/20000 of Maximum frequency ex.) 0.003Hz at 60Hz, 0.006Hz at 120Hz, 0.02Hz at 400H 1/20000 of Maximum frequency, with AVR control: 80 to 240V Torque boost	frequency	,			• Dig	ital set	ting :	±0.01	% of M	aximuı	m frequ	uency ((at -10	to +50	°C)							
LINK setting Selects from the following two items. 1/20000 of Maximum frequency ex.) 0.003Hz at 60Hz, 0.006Hz at 120Hz, 0.02Hz at 400Hz		Setting i	resolutio	on		-	_					,	,			,		,				
1/20000 of Maximum frequency ex.) 0.003Hz at 60Hz, 0.006Hz at 120Hz, 0.02Hz at 400H					_									19Hz (0	.1Hz at	Maxim	um freq	uency	of 100Hz	and ab	ove)	
Voltage / freq. (V/f) characteristic							iig .							0.0031	dz at 6	0Hz, 0	.006Hz	at 12	0Hz, 0.	02Hz a	t 400F	lz
Torque boost								• 0.01	Hz (Fix	(ed)												
Control) characteristic	+) to 24	0V						
Control		Torque b	oost										and A0	5.								
Starting torque 2.0 to 20.0 : Manual (for constant torque load) 180% (with Dynamic torque-vector control selected) 10 to 15% 10 to 10	Control				_																	
Starting torque													load)									
Standard Time s 10 5 5 5 No limit		Starting	torque		+			•)				180% (with Dvr	namic torq	ue-vecto	control	selected)
Standard Time		J J		torque *10		_								2	0%							,
Standard Braking torque 150% 100% 100%		Standard	—	· · ·	4	1											No limi	it				
Time s 90 45 45 45 30 20 10 8 10			Duty cy	rcle %El	10	5	3	5	3	2	3	2					No limi	t				
Time s 90 45 45 45 30 20 10 8 10																				100%		
options 10%ED Braking torque						45	45	45	30	2	20		1	0		8				10		
Options 10%ED Braking torque 150% 150% *12) Time s 90 45 30 20 10 Duty cycle%ED 10 10 10 DC injection braking Starting frequency: 0.1 to 60.0Hz Braking time: 0.0 to 30.0s Braking level: 0 to 100% of rated current *Inverter restarts at the starting frequency when operation command is input while braking is operating. *DC injection braking does not operate at the time of change-over from forward to reverse operation. *DC injection braking does not operate when frequency setting is decreased while operation command (FWD, REV) is being input.	Braking	Using		Duty cycle%El	37	22	18	10	7		5			5		5				10		
Time s 90 45 30 20 10 Duty cycle%ED 10 10 10 DC injection braking Starting frequency: 0.1 to 60.0Hz Braking time: 0.0 to 30.0s Braking level: 0 to 100% of rated current *Inverter restarts at the starting frequency when operation command is input while braking is operating. *DC injection braking does not operate at the time of change-over from forward to reverse operation. *DC injection braking does not operate when frequency setting is decreased while operation command (FWD, REV) is being input.	_	options	10%ED	Braking torqu	9		-			15	60%						*12)					
DC injection braking Starting frequency: 0.1 to 60.0Hz Braking time: 0.0 to 30.0s Braking level: 0 to 100% of rated current *Inverter restarts at the starting frequency when operation command is input while braking is operating. *DC injection braking does not operate at the time of change-over from forward to reverse operation. *DC injection braking does not operate when frequency setting is decreased while operation command (FWD, REV) is being input.							45		30	2	20			10			1					
*Inverter restarts at the starting frequency when operation command is input while braking is operating. *DC injection braking does not operate at the time of change-over from forward to reverse operation. *DC injection braking does not operate when frequency setting is decreased while operation command (FWD, REV) is being input.				Duty cycle%El	<u> </u>			1	10				1	0	10	0	1					
*DC injection braking does not operate at the time of change-over from forward to reverse operation. *DC injection braking does not operate when frequency setting is decreased while operation command (FWD, REV) is being input.		DC injec	tion bra	king																	nt	
*DC injection braking does not operate when frequency setting is decreased while operation command (FWD, REV) is being input.									U		,							_		_		
Enclosure (IEC 60529)						•		_						_					•		g input.	
	Enclosure	e (IEC 605	29)							IP 40								IP	00 (IP	20 : O	otion)	
Cooling method Natural cooling Fan cooling	Cooling n	nethod			Nat	ural co	oling							Fa	n cooli	ng						
-UL/cUL -Low Voltage Directive -EMC Directive -TÜV (up to 22kW)																						
Standards -IEC 61800-2 (Ratings, specifications for low voltage adjustable frequency a.c. power drive systems)	Standards	s														cy a.c	. powei	drive	system	ıs)		
-IEC 61800-3 (EMC product standard including specific test methods) Mass kg 2.2 2.2 2.5 3.8 3.8 3.8 6.1 6.1 10 10 10.5 10.5 29 36 44 46 70	Mass			le.	+	_	- `	· -								10 5	20	26	11	16	70	115
Mass kg 2.2 2.5 3.8 3.8 3.8 6.1 6.1 10 10 10.5 10.5 29 36 44 46 70 NOTES:				K!	9 2.2	2.2	2.0	3.0	3.0	3.0	0.1	0.1	10	10	10.5	10.5	29	30	44	40	70	113

- Inverter output capacity (kVA) at 220V. Rated capacity reduces when power supply voltage decreases.

 Output voltage cannot exceed the power supply voltage.

 Current derating may be required in case of low impedance loads such as high frequency motor.

 Use a DC REACTOR (DCR) when the voltage unbalance exceeds 2%. (This value is equivalent to FUJI's conventional allowable value.)

 Voltage unbalance (%) = Max. voltage [V] Min. Voltage [V] / Three-phase average voltage [V] x 67 (Conforming to EN61800-3 (5.2.3))

- Tested at standard load condition (85% load).
 This value is under FUJI original calculation method.
 When power-factor correcting DC REACTOR (DCR) is used. *5) *6) *7) *8) *9)
- When inverter is operating at a carrier frequency of 10kHz or higher, the inverter may automatically reduce the carrier frequency to 8kHz for protecting inverter. When torque boost is set at 0.1, starting torque of 50% or more can be obtained.

 With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60Hz. (It may change according to motor loss.)
- *10) With a nominal applied motor, this value is average to
 *11) Order individually.
 *12) Applicable to 10%ED when using options (standard)

1. Standard Specifications

1.1.2 Three-phase 400V FRENIC5000G11S Series (JE)

										-	-																	
		Item												Sp	ecifi	catio	าร											
Туре	FRN□□	⊒G11S-4	JE	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15 18.	5 22	30	37	45	55	75	90	110	132	160	0 200	220	28	80 315	355	400
Nominal a	pplied m	otor	kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11	15 18.	5 22	30	37	45	55	75	90	110	132	160	0 200	220	28	80 315	355	400
	Rated ca	apacity *1	1) kVA	1.1	1.9	2.8	4.1	6.8	9.9	13	18	22 29	34	45	57	69	85	114	134	160	192	23	1 287	316	39	96 445	495	563
	Rated vo	oltage *2)) V	3-ph	ase		380	400	, 415	V/50I	Hz	380	400,	440	460	V/60F	lz											
Output	Rated cu	ırrent *3)	Α Α	1.5	2.5	3.7	5.5	9	13	18	24	30 39	45	60	75	91	112	150	176	210	253	30	377	415	52	20 585	650	740
ratings	Overload	d capabil	lity						for 1r							rated												
	Rated from	equency	Hz	50, 6																								
	Phases,	Voltage,	Frequency	3-ph	ase	38	30 to	480\	V 50)/60H	lz			3-р	hase	380	to 4	40V/	50Hz	z 3	80 to	o 48	30V/60	OHz	*4))		
	Voltage /	/ frequen	cy variations	Volta	age	: +10) to -	15%	(Vol	tage	unba	alance	*5) : 2	2% o	r less) Fr	eque	ency	:+5 t	o –5	5%							
Input	Momenta *6)	ary volta	ge dip capability									ore, the										ate	d for 1	I5ms	 } .			
ratings	'											ctable.				, , ,					-1-							
	Rated cu	urrent *7)	(with DCR)	0.82	1.5	2.9	4.2	7.1	10.0	13.5	19.8	26.8 33.	2 39.3	54	67	81	100	134	160 1	196	232	282	2 352	385	49	91 552	624	704
		Α	(without DCR)	1.8	3.5	6.2	9.2	14.9	21.5	27.9	39.1	50.3 59.	9 69.3	86	104	124	150	-	-	-	-	-	-	-	Γ	- -	-	-
	Require	d power :	supply kVA	0.6	1.1	2.1	3.0	5.0	7.0	9.4	14	19 24	28	38	47	57	70	93	111 1	136	161	196	6 244	267	7 34	41 383	433	488
			mum frequency	50 to	o 40	0Hz																<u> </u>					<u> </u>	
	Setting	Base	frequency	25 to	o 40	0Hz																						
		Start	ing frequency	0.1 t	o 60	Hz,	Hole	ding	time:	0.0 to	o 10.	.0s																
	Carrier f	requency	y *9)	0.75	to	15kH	łz											0.75	to 10	ΟkΗ	z							
Output frequency		y (Stabili	ity)									m frequ um frec)°C)											
	Setting i	esolutio	n	• Dig	gital		ng	: 0.0 : Se • 1.	1Hz at	t Max from 0 of	imum the f Maxi	um freq n freque followin imum fr	ncy of g two	up to	99.99 s.	9Hz ().1Hz	at M	axim	um f	requ	ency	y of 10	0Hz a	and	above)		
	Voltage /	freq. (V/f)) characteristic	Adju	ıstab	ole at	bas	e an	d max	kimur	n fre	quency	, with	AVF	con	trol : 3	320 t	o 480	VC									
Control	Torque t	ooost		0. 0. 1.	.0 .1 to .0 to	0.9	: Au : Ma : Ma	toma anua anua	atic (for val (for p	or co varia propo	nstar ble to	tion coon nt torquorque lo al spee torque l	e loa bad) * d tord	d) 10)		5.												
	Starting	torque							•			rol selec		180	% (w	ith Dyı	namio	c torq	ue-ve	ctor	cont	trol	selecte	ed)				
	<u> </u>	Braking	torque *11)	150	·		_	100%				20%									to 1							
	Standard	Time	s	5				5						"				No	limi	t								
		Duty cy	cle %ED	5	3	5	3	2	3	2								No	limi	t								
		Standard	Braking torque					15	0%									1	00%									
			Time s		45		30	2	20		10)	8						10									
Braking	Using		Duty cycle%ED	22	18	10	7	5	5		5		5						10									
	options	10%ED	Braking torque					15	0%					*13	3)													
			Time s		45		30	2	20			10		1														
			Duty cycle%ED		10		10	1	0			10																
	DC injec	tion brak	king	* In * D	vert C in	er re	start	s at	g doe	artin	g free	Braking quency erate at when free	wher	n ope me o	ratio	n com	mar ver f	nd is from	input forwa	wh ard	ile b to re	raki ver	se op	oper erati	atir on.	ng.	nput.	
Enclosure	(IEC 605	29)						<u> </u>	IP 40				,										Optio					
Cooling m	•	•		Natural c	cooling								Fa	n co	oling								•	•				
Standards	6			-UL/ -IEC -IEC	cUL 618	300-2 300-3	2 (Ra 3 (EN	itings IC p	roduc	cifica t stai	ations ndar	s for lov	ling s	age a	adjus ic tes	t met	frequ hods	uenc	y a.c.	. po		_						
Mass			kg	2.2	2.5	3.8	3.8	3.8	6.5	6.5	10	10 10.	5 10.5	29	34	39	40	48	70	70	100	100	0 140	140	25	250	360	360
NOTES:																												

- *3) *4) *5)
- Inverter output capacity (kVA) at 440V. Rated capacity reduces when power supply voltage decreases.

 Output voltage cannot exceed the power supply voltage.

 Current derating may be required in case of low impedance loads such as high frequency motor.

 When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, the tap of the auxiliary transformer must be changed.

 Use a DC REACTOR (DCR) when the voltage unbalance exceeds 2%. (This value is equivalent to FUJI's conventional allowable value.)

Voltage unbalance (%) = Max. voltage [V] – Min. Voltage [V] x 67

Three-phase average voltage[V] (Conforming to EN61800-3 (5.2.3))

- *6) *7) *8) Tested at standard load condition (85% load).

- This value is under FUJI original calculation method.

 When power-factor correcting DC REACTOR (DCR) is used.

 When inverter is operating at a carrier frequency of 10kHz or higher, the inverter may automatically reduce the carrier frequency to 8kHz for protecting inverter. when power-factor correcting DC REACTOR (DCR) is used.

 When inverter is operating at a carrier frequency of 10kHz or higher, the inverter may automatically reduce the carrier frequency to 8kHz for protecting then inverter is operating at a carrier frequency of 10kHz or higher, the inverter may automatically reduce the carrier frequency to 8kHz for protecting then inverter is operating at a carrier frequency to 8kHz for protecting then inverter is operating to the carrier frequency to 8kHz for protecting then inverter is operating to the carrier frequency to 8kHz for protecting then inverter is operating to the carrier frequency to 8kHz for protecting then inverter is operating to the carrier frequency to 8kHz for protecting the carrier frequency to 8kHz for protecting then inverter is operating to the carrier frequency to 8kHz for protecting the carrier frequency

1. Standard Specifications

1.1.3 Three-phase 200V FRENIC5000P11S Series (JE) (for variable torque load)

		Item		1					95	ecificatio	ne					
Туре	FRN□□□		JE	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Nominal a			JE kW	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110
Nominara	Rated ca			_	11	16	20	25	29	43	55	68	81	107	131	158
	Rated vo	<u> </u>	•		l	V/50Hz	1	20, 230V		40	- 33	00	01	107	131	130
Output	Rated cu		<u> </u>	+ ' ' ' '	29	42	55	67	78	115	145	180	215	283	346	415
ratings	Overload		- /	+		irrent for 1		07	70	113	143	100	213	200	340	413
ratings	Rated from			_		inent loi										
			Frequency	3-phase		230V 5	50/60Hz			3-phase	200 to 22	20V/50Hz (220 to 230	V/50Hz) *1	1) 200 to 2	230V/60Hz
	<u> </u>		ncy variations	+ ' -			oltage unb	alance */	1) · 2% or	II .		:+5 to -5		¥750112) 1	1) 200 10 2	-00 V/001 12
Input ratings	— <u> </u>	•	dip capability	When th	ne input v	roltage is roltage dro	165V or n	nore, the	inverter c	an be ope voltage, th	erated co	ntinuousl	y.	for 15ms		
	Rated cu	ırrent *6) (with DCR)	19.7	26.9	39.0	54.0	66.2	78.8	109	135	163	199	272	327	400
		4	(without DCR	40.8	52.6	76.9	98.5	117	136	168	204	243	291	-	-	-
	Required capacity	•	supply kVA	6.9	9.4	14	19	23	28	38	47	57	69	95	114	139
		Maxi	mum frequency	50 to 12	0Hz											
	Setting	Base	frequency	25 to 12	0Hz											
		Start	ting frequency	0.1 to 60	OHz, Hol	ding time	: 0.0 to 10).0s								
		Carr	ier frequency *8	0.75 to	15kHz					0.75 to 1	0kHz				0.75 to 6	6kHz
Output frequency	Accurac	y (Stabil	ity)				of Maxim 6 of Maxir			25±10°C) -10 to +5	60°C)					
	Setting r	resolutio	n		setting	: 0.01Hz : Selects • 1/200	at Maximu	m frequent following ximum fre	cy of up to two item	a.) 0.02Hz 99.99Hz ns. ex.) 0.00	0.1Hz at 1	Maximum 1	frequency		ind above)	
	Voltage /	freq. (V	/f) characteristic	Adjustat	ole at bas	se and ma	aximum fr	equency,	with AVF	control:	80 to 240	V				
Control	Torque b	oost		0.0 0.1 to 1.0 to	: Ai 0.9 : M 1.9 : M	utomatic (anual (for anual (for	using Fund for constant variable r propotion constant	int torque torque lo nal speed	load) ad) *9) torque lo							
	Starting	torque								50%						
		Braking	torque *10)			20	0%						10 to 15	%		
	Standard	Time	· · · · · · · · · · · · · · · · · · ·						No	limit						
		Duty cy	cle %ED						No	limit						
		Standard	Braking torque			10	0%						75%			
			Time s	1	5		7	8	3				10			
Braking	Using		Duty cycle%ED	3	.5	3	.5	4	1				10			
	options	10%ED	Braking torque			10	0%			*12)						
			Time s	1	5		-	7								
			Duty cycle%ED	1	0	10	10	-	7							
	DC injec	tion bra	king	* Inverte * DC inj	er restart ection br	aking doe	tarting free s not ope	quency w rate at th	e time of	to 30.0s ation com change-o g is decreas	mand is i	input whil forward t	le brakino o reverse	operation	ting. n.	put.
Enclosure	(IEC 605	29)				IP	40					IP 00	0 (IP 20	Option)		
Cooling m	nethod								F	an coolin	g					
Standards	s				800-2 (R		ecification	s for low		/e -TÜ adjustable ic test me		,	wer drive	systems)	
Mass			kg	5.7	5.7	5.7	10	10	10.5	29	29	36	44	46	70	115
NOTES:																_

- NOTES: *1) Inv *2) Ou *3) Cu *4) Us
- Inverter output capacity (kVA) at 220V. Rated capacity reduces when power supply voltage decreases.

 Output voltage cannot exceed the power supply voltage.

 Current derating may be required in case of low impedance loads such as high frequency motor.

 Use a DC REACTOR (DCR) when the voltage unbalance exceeds 2%. (This value is equivalent to FUJI's conventional allowable value.)

Voltage unbalance (%) = $\frac{\text{Max. voltage [V]} - \text{Min. Voltage [V]}}{\text{Three-phase average voltage[V]}} \times 67$ (Conforming to EN61800-3 (5.2.3))

- Tested at standard load condition (85% load).
 This value is under FUJI original calculation method.
 When power-factor correcting DC REACTOR (DCR) is used.
- *5) *6) *7) *8) *9) *10) When inverter is operating at a carrier frequency of 10kHz or higher, the inverter may automatically reduce the carrier frequency to 8kHz for protecting inverter. When torque boost is set at 0.1, starting torque of 50% or more can be obtained.

 With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60Hz. (It may change according to motor loss.)

- Order individually.

 Applicable to 10%ED when using options (standard)

1. Standard Specifications

1.1.4 Three-phase 400V FRENIC5000P11S Series (JE) (for variable torque load)

					_																					
		Item			Ь										Spec	ifica	tions									
Туре	FRN□□	□P11S-4	JE		5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	450 500
Nominal a	pplied m	otor		kW	5.5	7.5	11	15	18.5	22	30	37	45	55	75	90	110	132	160	200	220	280	315	355	400	450 500
	Rated ca	pacity *	1)	kVA	9.5	12.5	17.5	22.8	28.1	33.5	45	57	69	85	114	134	160	192	231	287	316	396	445	495	563	640 73°
0	Rated vo	oltage *:	2)	٧	3-ph	ase	3	80, 4	100, 4	15V/	50Hz	<u>.</u>	380,	400,	440,	460\	//60H	lz								
Output	Rated cu	ırrent *:	3)	Α	12.5	16.5	23	30	37	44	60	75	91	112	150	176	210	253	304	377	415	520	585	650	740	840 960
raitings	Overload	d capabi	lity		110°	% of ı	ated	curre	ent fo	r 1mi	n															
	Rated fro	equency		Hz	50, 6	60Hz																				
	Phases,	Voltage,	Frequency		3-ph	ase 3	80 to	480V	/ 50/6	0Hz	3-pł	nase	380	to 44	IOV/5	0Hz	380	to 48	30V/6	0Hz	*4)					
	Voltage /	frequen	cy variations		Volta	age :	+101	to -15	5% (\	Volta	ge ur	nbalar	nce *	'5) : 2	% or	less)	Fre	eque	1су:+	-5 to	-5%					
Input ratings	Momenta *6)	ary volta	ge dip capabi	ility	Whe	n the	inpu	ıt volt		drops	belo	w 31	OV fr	inver om ra								erated	d for	15ms		
	Rated cu	ırrent *7	(with DCR))	10.0	13.5	19.8	26.8	33.2	39.3	54	67	81	100	134	160	196	232	282	352	385	491	552	624	704	792 880
		Δ	(without D	CR)	21.5	27.9	39.1	50.3	59.9	69.3	86	104	124	150	-	-	-	-	-	-	-	-	-	-	-	- -
-	Required capacity	•	supply	kVA	7.0	9.4	14	19	24	28	38	47	57	70	93	111	136	161	196	244	267	341	383	433	488	549 610
		Maxi	mum frequen	су	50 to	o 120	Hz																			
	Setting	Base	frequency		25 to	o 120	Hz																			
		Start	ing frequency	/	0.1 t	to 60I	∃z, ŀ	Holdir	ng tim	ie: 0.	0 to	10.0s														
	Carrier f	requenc	y *9)		0.75	to 1	5kHz	<u>z</u>			0.75	5 to 10	OkHz	2		0.75	to 6	кНz								
Output frequency	Accurac	y (Stabil	ity)											uency quenc				o°C)								
	Setting r	esolutio	n		· Di		ettin	g :	0.01H Selec	z at N ets fro	Maxim om th of M	ium fro ie follo laximi	equer owin	uency ncy of g two reque	up to item	99.99 s.	9Hz (().1Hz	at Ma	ximur	m freq	luency	of 10		ınd ab	ove)
	Voltage /	freq. (V	//f) characteris	stic	Adju	ıstabl	e at l	base	and n	naxin	num	frequ	ency	, with	AVR	cont	rol : 3	320 to	480	V						
Control	Torque b	oost			0.0 0.1	1 to 0 0 to 1	.9 : .9 :	Autor Manu Manu	matic ual (fo	(for contract) for var for pro	const iable potic	ant to torqu nal sp	rque le loa peed	de F09 e load ad) *1 d torqu) 0)		i.									
	Starting	torque														50%										
•		Braking	torque	*11)			20	0%											10 to	15%						
	 Standard		•	s											N	lo lim	nit									
		Duty cy	cle	%ED											N	lo lim	nit									
			Braking torq	ue			10	00%											75%							
			Time	s	1	15		7	8	3									10							
Braking	Using		Duty cycle	%ED	_	.5		.5	4										10							
	options	10%ED	Braking torq		Ť	-		00%			*13)															
			Time	s	1	15			7		,															
			Duty cycle	%ED	_	10	10		7	,																
	DC injec	tion bral			Star * Inv * D0	ting f verter C inje	reque rest	ency: arts a brak	ing do	starti oes n	ing fr	eque erate	ncy v	g time when he tim	opera	ation chan	comr ge-ov	nand er fro	is inpom fo	out w	hile b	rakin evers	g is o	ratio	ting. n.	nt ng input.
Enclosure	(IEC 605	29)			Г		ΙP	40									IP	00 (IP 20) : Op	otion))				
Cooling m	•	•													Fa	n cod										
Standards					-IEC	618	00-2 00-3	(Ratii (EMC	proc	specif duct s	fication stand	ons fo	r lov clud	C Dire	ective age a pecifi	e adjust c tes	TÜV table t metl	frequ nods)	ency	a.c.						
Mass				kg	6.1	6.1	6.1	10	10	10.5	29	29	34	39	40	48	70	70	100	100	140	140	250	250	250	360 360
NOTES:																										

- NOTES: *1) Inv

- Inverter output capacity (kVA) at 440V. Rated capacity reduces when power supply voltage decreases.

 Output voltage cannot exceed the power supply voltage.

 Current derating may be required in case of low impedance loads such as high frequency motor.

 When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, the tap of the auxiliary transformer must be changed.

 Use a DC REACTOR (DCR) when the voltage unbalance exceeds 2%. (This value is equivalent to FUJI's conventional allowable value.)

Voltage unbalance (%) = $\frac{\text{Max. voltage [V] - Min. Voltage [V]}}{\text{Three-phase average voltage[V]}} \times 67$ (Conforming to EN61800-3 (5.2.3))

- Tested at standard load condition (85% load).

- This value is under FUJI original calculation method.

 When power-factor correcting DC REACTOR (DCR) is used.

 When inverter is operating at a carrier frequency of 10kHz or higher, the inverter may automatically reduce the carrier frequency to 8kHz for protecting inverter.
- *10) When torque boost is set at 0.1, starting torque of 50% or more can be obtained.
 *11) With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60Hz. (It may change according to motor loss.)
- Consult with Fuji Electric.
- Applicable to 10%ED when using options (standard)

1. Standard Specifications

1.1.5 Three-phase 400V FRENIC5000G11S Series (EN)

		tem														S	peci	ficat	ions											
FRN□	⊒□G	11S-4E	N		0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	-	30	37	45	55	75	90	110	132	160	200	220	280	315	400
FRN30	G115	S-4EV '	*1)		-	-	-	-	-	-	-	-	-	-	-	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nomin	al (C	T use)		kW	0.4	0.75	1.5	2.2	4.0	5.5	7.5	11	15	18.5	22	-	30	37	45	55	75	90	110	132	160	200	220	280	315	400
Maxim	um (VT use))	kW	-	-	-	-	-	7.5	11	15	18.5	22	-	30	37	45	55	75	90	110	132	160	200	220	280	315	400	50
				(VA	1 0	17	26	3.9	6.4	9.3	12	17	21	28	32	32	43	53	65	80	107	126	150	181	218	270	298	373	420	53
-			, .	\rightarrow				_									_											0.0	0	-
		<u> </u>		-	·			_	_	i –	_	_	_	– –	Ó		_	_	_						304	377	115	520	585	7/
			(VT uso)	$\stackrel{\boldsymbol{\cdot}}{+}$	1.5	2.5	5.7			+	_	_									_	_				_				
					150	0/ -4							31	44	_						-			304	311	415	320	303	050	90
Сараы	шу		,																											
Rated	frequ	iency		Hz	50,	60H	z																							
Phases	s, Vol	ltage, F	requency		3-ph	nase	38	30 to	480	V 5	0/60	Hz				3-pl	hase	380) to 4	140V	/50H	lz 3	80 to	480	V/60	Hz *	` 5)			
Voltage	e / fre	equenc	y variations	s	Volt	age	: +10) to -	-15%	(V	oltag	e unl	bala	nce *	6) : 2	2% o	r less	s) F	requ	ienc	y :+5	to -	5%							
Momer *7)	ntary	voltage	e dip capab	1	Whe	en th	ne in	out v	oltag	je dro	ops b	elow	310	V fro										ated f	or 1	5ms				
L			= ==	-	_				<u> </u>							I	I		l	T	I	T	I	I I			I	T		
	.		, , ,	-	-		_	_	_	_	_	_	_	_	-	-	_				_	160	196	232	282	352	385	491	552	70
	١		•		1.8	3.5	6.2	9.2	14.9	_				-		-	-				-	-	-	-	-	-	-	-	-	_
-,		VT	, ,	-	-	-	-	-	-				_			-	67			134	160	196	232	282	352	385	491	-	-	-
<u> </u>			`	CR)	-	-	-	-	-	27.9	39.1	50.3	59.9	69.3	-	86	104	124	150	-	-	-	-	-	-		-	-	-	-
		vith DC	R) K	_				3.0	5.0	7.0	9.4	14	19	24	28	38	38	47	57	70	93	111	136	161	196	244	267	341	383	48
Setting	9	Base f	requnecy		25 t	o 40	0Hz																							
		Startin	g frequenc	у	0.1	to 60	OHz,	Hole	ding	time	0.0	to 10	0.0s																	
Carrier	r freq	uency	*9)															_												
													3)										ler)							
,				l	J.7 C	, 10	IOK	1 12 (/	JKV	V OI I	argei	,								•		,	r)							
-	acv (S	Stability	<i>/</i> \		• Ar	nalo	g set	ting:	±0.	2% c	f Ma	ximu	m fr	20110	nev (,							
	, (,			gital	sett	ing :	±0.	01%							-10 to)°C)											
Setting		olution			Di Ar	nalog	g set	ting:	1/3	000	of M	axim ıximu	um f um fr	reque	ency	(at -	-10 to	+50 2Hz a	at 60				120							
Setting		-			Di Ar Di	nalog gital	g set sett	ting:	1/3	000 d 1Hz a	of M of Ma t Max	axim ximu imum	um f um fr n frec	requ eque juenc	ency ency y of u	ex.)	-10 to 0.02 99.99	+50 2Hz a	at 60				120H equer							
Setting		-			Di Ar Di	nalog gital	g set sett	ting:	1/3 0.01 Sel	000 d 1 Hz a ects	of Ma of Ma t Max from	axim ximu imum the f	um fr um fr of frection	reque eque luenc wing	ency ency y of u two it	ex.) p to stems	-10 to 0.02 99.99 s.	2Hz a Hz (0	at 60).1Hz	at M	axim	um fr	equer	ncy of	100H	Hz an	d abo	ove)	nHz	
Setting		-			Di Ar Di	nalog gital	g set sett	ting:	1/3 0.01 Sel • 1	000 d 1 Hz a ects	of Max from 00 of	aximuximum the f	um fr um fr of frection	reque eque luenc wing	ency ency y of u two it	ex.) p to stems	-10 to 0.02 99.99 s.	2Hz a Hz (0	at 60).1Hz	at M	axim	um fr		ncy of	100H	Hz an	d abo	ove)	OHz	
	g reso	olution			Di Ar Di Lli	nalog gital NK s	g set sett settir	ting: ing:	1/3 0.01 Sel • 1 • 0	000 d 1Hz a ects /200 0.01H	of Max t Max from 00 of lz (Fi	aximuximum the f Max xed)	um fr um fred follov kimu	reque eque juenc wing m fre	ency ency y of u two it equer	ex.) p to 9 tems	-10 to 0.02 99.99 s.	2Hz a Hz (0	at 60).1Hz 3Hz a	at M at 60	axim	um fr	equer	ncy of	100H	Hz an	d abo	ove)	OHz	
Voltage	g reso	olution	characteristic		• Di • Ar • Di • Lll	nalog gital NK s	g set settir ole a	ting: ing:	1/3 0.01 Sel • 1 • 0	000 (1Hz a ects /200).01H	of Max Max from 00 of z (Fi	aximumimum the formula (Maximum) (Ma	um frection follow kimu	requerulation frequerulation frequer	ency ency y of u two it quer	ex.) p to 9 tems ncy	-10 to 0 0.02 99.99 s. ex.)	2Hz a Hz (0 0.003	at 60).1Hz 3Hz a	at M at 60	axim	um fr	equer	ncy of	100H	Hz an	d abo	ove)	OHz	
	g reso	olution			Di Ar Di Lll	nalog gital NK s	g set settir ole a	ting: ing: ig:	1/3 0.01 Sel • 1 • 0 se an	000 d 1Hz a ects /200 0.01H d ma	of Max from 00 of z (Fi	aximum the finax (Max Max Max Max Max Max Max Max Max Max	um fred follow kimu eque	requerequency, wing m freency, code	ency ency y of u two it quer	ex.) p to 9 tems ncy AVR	-10 to 0.02 99.99 6. ex.)	2Hz a Hz (0 0.003	at 60).1Hz 3Hz a	at M at 60	axim	um fr	equer	ncy of	100H	Hz an	d abo	ove)	OHz	
Voltage	g reso	olution			Adju	nalog gital NK s ustal que la 1.0	g set settir ole a ooos	ting: ing: ig: t bas t can : Au	1/30 0.01 Sel • 1 • 0 se an be sutoma	000 d 1Hz a ects /200 0.01H od ma set, u atic (of Max from 00 of z (Fi eximu sing for co	aximuximum the file Maxxed) Im from the constant	um from from follow cimu eque	requereque ving m free code corque los	ency ency y of u two if equer with e F09 e load	(at - ex.) p to 9 tems ncy AVR and d)	-10 to) 0.02 99.99 s. ex.) (2Hz a Hz (0 0.003	at 60).1Hz 3Hz a	at M at 60	axim	um fr	equer	ncy of	100H	Hz an	d abo	ove)	OHz	
Voltage	g reso	olution			Adju	nalog gital NK s ustal que l .0	g set settir ole a poos 0.9	ting: ing: ig: t bas t can : Au : Ma	1/30 0.01 Sel • 1 • 0 se an be sattoma	000 of the area of	of Max from 00 of z (Fin sing for con variation	aximuximum the f Maxxed) um fronstaable ootion	um frum fred follow kimu eque ction ant to torqu	requere pure pure pure pure pure pure pure	ency ency y of u two it equer with e F09 e load ad) *	(at - ex.) p to 9 tems ncy AVR and d)	-10 to) 0.02 99.99 s. ex.) (2Hz a Hz (0 0.003	at 60).1Hz 3Hz a	at M at 60	axim	um fr	equer	ncy of	100H	Hz an	d abo	ove))Hz	
Voltage Torque	/ freq	olution	:haracteristic	:	Adju	ustal que la .0 .1 to	g set settir ole a poos 0.9 0.1.9	ting: ing: ing: t bas t can : Au : Ma	1/3 0.01 Sel • 1 • 0 se an be s atoma anua anua	000 d 1Hz a ects /200 0.01H od ma set, u atic (of Max from 00 of 1z (Fi eximusing for co variation	aximuximum the file Max xed) um fronsta able sotion stant	um frection follow cimu eque ction ant to torqual s	requere puency, code orque los peeds ue los	ency ency y of u two if equer with e F09 e loace ad) *	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	aximi	um fr	equer	ncy of	100Hz,	1z an	d abo	ove)	OHz	
Voltage Torque	/ freq	olution i. (V/f) c st que *1	:haracteristic		Adju	nalog gital NK s ustak que k .0 .1 to .0 to	g set settir ole a poos 0.9 0.1.9	ting: ing: ing: t bas t can : Au : Ma : Ma	1/3 0.01 Sel • 1 • 0 se an be s atoma anua anua	000 of the following the follo	of Max from 00 of 1z (Fi eximusing for co variation	aximuximum the file Max xed) um fronsta able sotion stant	um frection frections to the control sequention frection	requere puency, code orque los peeds ue los	ency ency y of u two if equer with e F09 e loace ad) *	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	aximi Hz, (um fr	equer	ncy of	100Hz,	1z an	d abo	ove)	DHz	
Voltage Torque	/ freq	olution i. (V/f) c st que *1 Brakin	:haracteristic	11)	• Di • Ar • Di • LIII Adju Torc 0 0 1 2 2200	ustate us	g set settir ole a poos 0.9 0.1.9	ting: ing: ing: t bas t can : Au : Ma : Ma	1/30 0.0° Sel • 10 0.0° Sel •	000 of the following the follo	of Max from 00 of 1z (Fi eximusing for co variation	aximuximum the file Max xed) um fronsta able sotion stant	um frection frections to the control sequention frection	eque juency wing m fre ency, code orque jue los jue los selecto	ency ency y of u two if equer with e F09 e loace ad) *	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	aximi Hz, (GOV	vecto	r cont	ncy of	100Hz,	1z an	d abo	ove)	DHz	
Voltage Torque	/ freq	olution i. (V/f) c st que *1 Brakin Time	haracteristic	111) s	• Di • Ar • Di • LIII Adju Torcc 0 0 1 2 200 5	nalogital NK s ustal que l 0.0 to 0.0 to	g sett settir	ting: ing: ing: ing: ing: ing: ing: ing:	1/3 0.01 Sel 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 (1Hz arects ects /2000).01H d matic (1l (for rque-	of M of Max from 00 of z (Fi xximu sing for co varia prop cons	aximuximum the file Max xed) um fronsta able sotion stant	um frection frections to the control sequention frection	eque juency wing m fre ency, code orque jue los jue los selecto	ency ency y of u two if equer with e F09 e loace ad) *	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	aximi Hz, (vecto) to 1	r cont	ncy of	100Hz,	1z an	d abo	ove)	DHz	
Voltage Torque	/ freq	olution i. (V/f) c st que *1 Brakin Time Duty c	haracteristic) g torque *	11)	• Di • Ar • Di • LIII Adju Torc 0 0 1 2 2200	ustate us	g set settir ole a poos 0.9 0.1.9	ting: ing: ing: t bas t can : Au : Ma : Ma	1/30 0.0° Sel • 10 0.0° Sel •	000 c 11Hz a ects /200 0.01H d ma set, u atic (ul (for rque-	of M of Max from 00 of dz (Fi output sing prop prop con: 2	aximuximum the file Max xed) um fronsta able sotion stant	um frection frections to the control sequention frection	eque juency wing m fre ency, code orque jue los jue los selecto	ency ency y of u two if equer with e F09 e loace ad) *	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	que-\	/ecto) to 1	r cont	ncy of	100Hz,	1z an	d abo	ove)	DHz	
Voltage Torque	/freq	que *1 Brakin Time Duty c Brakin	haracteristic	111) s %	• Di • Ar • Di • LIII Adju Torcc 0 0 1 2 200 5	nalogital NK s ustate que t .0 .1 to .0 to .0 to % (w	g sett settir	t bas t can : Au : Ma : Ma D: Ma	1/30 0.01 Sel • 11 • 00 ee ann be statomaanua aanua aanua 1100% 5 2	000 c 1Hz a ects /200 0.01H d ma set, u atic (Il (for rque- 6	of M of Max of Max from on ot dz (Fi out	aximuximum the f i Maxxed) im fru Funconstable potior stant	um from free following free following free following free following free following free free free free free free free fre	eque juency wing m fre ency, code orque jue los jue los selecto	ency ency y of u two it equer with e F09 e loac ad) **	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	que-\ 100	vecto No lir	r cont	ncy of	100Hz,	1z an	d abo	at 400		
Voltage Torque Startin	/freq	olution i. (V/f) c st que *1 Brakin Time Duty c Brakin Time	haracteristic) g torque * ycle g torque	111) s %	• Di • Ar • Di • LIII • LIII 7 O 0 O 1 2 2 O 5 5	ustate us	g set settir ble a 0000s 0.9 1.9 20.1	ting: ing: ing: ing: t bas t can : Au : Ma : Ma : Ma ynan	1/30 0.01 Sell 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 c o o o o o o o o o o o o o o o o o	of M of Max of Max from on ot dz (Fi out	aximuximumimum the f Maxxed) Imm from from from from from from from fr	um frum frection frec	eque juency wing m fre ency, code orque jue los jue los selecto	ency y of u u y of u with e F09 h loac ad) *-	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	que-100 100 100 100 100 100 100 100 100 100	vecto O to 1 No lin No lin %	r cont	ncy of	100Hz,	1z an	d abo	*1	2)	
Voltage Torque Startin Standa	/ freq / freq g tor CT use	que *1 Brakin Time Duty c Brakin Time Duty c	haracteristic) g torque * ycle g torque	111) s %	• Di • Ar • Di • LIII Adju Torcc 0 0 1 2 200 5	nalogital NK s ustate que t .0 .1 to .0 to .0 to % (w	g set settir set	t bas t can : Au : Ma : Ma D: Ma	1/30 0.01 Sell 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 c 1Hz a ects /200 0.01H d ma set, u atic (Il (for rque- 6	of M of Max of Max from on ot dz (Fi out	aximuximumimum the f Maxxed) Imm from from from from from from from fr	uum firmum firmu	reque eque wing m fre ency, code propue lo peed ue lo wellect	ency ency y of u two it equer with e F09 e loac ad) **	(at - ex.) p to 9 tems ncy AVR and d) 10) ue lo	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	que-\ 100	vecto to 1 No lir	r cont	ncy of	100Hz,	1z an	d abo	*1		
Voltage Torque Startin	/freq / booo g tor ard CT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin	haracteristic) g torque * ycle g torque	**************************************	• Di • Ar • Di • LIII • LIII 7 O 0 O 1 2 2 O 5 5	ustate us	g set settir ble a 0000s 0.9 1.9 20.1	ting: ing: ing: ing: t bas t can : Au : Ma : Ma : Ma ynan	1/30 0.01 Sell 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 of 1Hz arects ects //200 0.01H d maset, u atic (for rque-6	of M of Max it Max from on of old	aximuximu imum the f Max xed) um fronstable ootion stant	um 1 free follow firm free follow from 1 free follow from 1 free follow for follow from 1 free follow for free follow from 1 fr	reque eque eque eque eque eque eque eque	ency y of u two if two if two if two if the FO9e load) ** The FO9e load T	(at - ex.) p to 9 tems ney AVR AVR 180	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	que-100 100 100 100 100 100 100 100 100 100	vecto) to 1 No lin %	r cont 15% mit	ncy of	100Hz,	1z an	d abo	*1	2)	
Voltage Torque Startin Standa	/freq / booo g tor ard CT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time	haracteristic) g torque * ycle g torque ycle g torque	111) s %	• Di • Ar • Di • LIII • LIII 7 O 0 O 1 2 2 O 5 5	ustate us	g set settir set	ting: ing: ing: ing: t bas t can : Au : Ma : Ma : Ma ynan	1/30 0.01 Sell 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000 c 11Hz a 11H	of M of Max of M	aximuximu imum the file Max xed) imm from the file Max xed) imm from the file Max xed) imm from the file Max xed imm from	um fired following the following fol	eque eque puency m free ency, code orque ue los peed ue los selectro 0%	ency y of u with e F09 e loac ad) ** I torquad) 8 5	(at - ex.) pp to 9 terms necy AVR ance and ance ance ance ance ance ance ance ance	-10 to 0.02 99.99 s. ex.) (cont d A05	2Hz a 2Hz a Hz (0 0.003 rol : :	at 60).1Hz 3Hz a	at M at 60 to 48	que-100 100 100 100 100 100 100 100 100 100	vecto to to 1 No lin %	r cont 15% mit mit %	ncy of	100Hz,	1z an	d abo	*1	2)	
Voltage Torque Startin Standa Using options	/freq /freq booo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time Duty c Brakin	haracteristic) g torque * ycle g torque ycle g torque	s %	• Di • Ar • Di • LIII Adju Torcc 0 0 1 2 2000 5 5	ustah NK s ustah uustah uustah .0 .1 t cc .0 tc .0 tc .0 tc .0 tc .3 .3 .3	g set settir settir ooos 0.9 1.9 20.0 10 - -	t bas t can : Au : Ma : Ma D: Ma Dynan 3	1/30 0.01 Sel • 11 • 00 be s and be s suttoma anual anual anual 100% 5 2	000 of 1Hz arects /200 0.01H d masset, u (all (for all (f	of M of Max of M	aximuximuthe filmaxed) Important filmaxed) Important filmaxed film	um fired free following free following free following free following free following free free free free free free free fre	requelle control contr	ency y of u with e Fogad) ** I torquad) ** 8 5	(at - ex.) p to 9 temss ncy AVR AVR 100 100 100	-10 td) 0.0299.99 5. ex.) (1 d cont d A05	2 + 50 2 Hz (C 2 Hz (C 0 0 0 0 3 3 3 4 5 6 7 7 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	at 600 0.1Hz 3320	at M at 60 at 60	que-\ 10 10 10	vecto O to 1 No lim %	r cont 15% mit mit	errol se	100Hz,	d)	d abo	*1 *1	2)	
Voltage Torque Startin Standa Using options	/freq /freq booo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time	haracteristic) g torque * ycle g torque ycle g torque	s %	• Di • Ar • Ar • Di • Ar • Di • Ar • Di • Ar • Di • Di • Ar • Di	ustable value to the control of the	g sett settir settir 00005 0.9 1.9 20.0 10 freq	t bas t can : Au : Ma : Ma : Ma yynan 30 7	1/30 0.0° Sel • 11 • 00 ee ann be s sutoma anua aanua aanua aanua 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	000 c 1Hz a 1Hz a 2Hz a	of M of Max of M	aximuximuthe 1 i Maxxed) Im from the front front from the front front from the front fr	um f free follow kimu eque eque eque to follow kimu eque eque eque to follow free follow free follow free free follow free free free free free free free fre	reque eque eque eque los ency, code orque los ency ency eque los electrons. One ency ency, code orque los electrons. One ency ency, code ency ency ency ency ency ency ency enc	ency of u two if quer with ep F09 bloacad) **- torquad)	(at - ex.) pp to 9 terms necy AVR 2 and 10 100 100 100 100 100 100 100 100 100	-10 to 0.023 (cont) 0.023 (con)	2 +50 +50 PHZ & PH	at 600 0.1Hz 320	at M at 60 to 48	que-\\ 100\\	vecto 0.000 100 100 100 100 100 100 100 100 1	r cont 15% mit mit	rrol se	100Hz,	d)	d abo	*1 *1	2)	
Voltage Torque Startin Standa Using options	/freq /freq booo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time Duty c Brakin	haracteristic) g torque * ycle g torque ycle g torque	s %	• Di • Ar • Di • Ar • Di • Ar • Di • Star • Torco • Di • Star • Ir	ustate que te construction de la	g set settir ble a ble	t bass t can : Au : Ma : M	1/30 0.01 Sell 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 of 1Hz a sects /2000 0.01H d ma set, u atic (lal (for rque-6) 150	of M of Max from 00 of z (Fi xximu sing for co vari prop con: 2 7 3.5 60.0h ttartir	aximuximuthe find Max (Max (Max (Max (Max (Max (Max (Max	um fired following the fired state of the fired sta	requelency code peece los selectros	ency ency of u two if the two if	(at - ex.) pp to 9 terms incy AVR and and 10 to	-10 to 0.0299.99 s. ex.) (1 to	20 +50 2Hz a 2Hz (0 0.003 irrol : : iith Dy	Binnmai	at M at 60 at 60 ic to 48	que-\\ 100\ 100\ 100\ 100\ 100\ 100\ 100\ 1	vecto 0.000 Vecto 0 to 1 No lin No lin 10 11 el: 0 t wh	r cont 15% mit mit	at 120	100Hz,	d)	d abo	*1 *1	2)	
Voltage Torque Startin Standa Using options	/freq /freq booo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time Duty c Brakin	haracteristic) g torque * ycle g torque ycle g torque	s %	• Di • Ari •	ustate to the control of the control	g set settir ble a 000s 0.99 1.99 20.0 with E freq ter re njecti	t bas t can : AL : Ma : Ma : Ma : Ma : Ma 30 7	1/30 0.01 Sell 10.01 S	000 d 1Hz a ects /200 0.01H d ma set, u atic ((id (for rque- 6 150 150 150 150 150 150 150 150 150 150	of M of Max from 00 of z (Fi xximu sing for co varia prop con: 2 % 7 3.5 60.0h ttartires no	aximuximu the financial formula in the financi	um fired following the fired following the fired following the fired following the fired following followi	equency, code peed ue los electros o %	ency ency of unit work of the control of the contro	(at - ex.), p to 9 tems oncy AVR and and 10 to	-10 to 0.0299.99 (cont.) (document) (documen	20 +50 2Hz a 2Hz (0 0.003 arrol : : iith Dy	Binmai	at M at 60 to 48	que-\\ 100 100 100 100 100 100 100 100 100 1	vecto 0.000 Vecto 0 to 1 No lin No lin Vecto 10 to 10	r cont 15% mit mit	at 12C	ope ope	d)	d abo	*1 *1 nt	2)	
Voltage Torque Startin Standa Using options	/freq /freq boo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time Duty c	haracteristic) g torque * ycle g torque ycle g torque	s %	• Di • Ari •	ustate to the control of the control	g set settir ble a 000s 0.99 1.99 20.0 with E freq ter re njecti	t bas t can : AL : Ma : Ma : Ma : Ma : Ma 30 7	1/30 0.01 Sell 10.01 S	000 d 1Hz a ects /200 0.01H d ma set, u atic ((id (for rque- 6 150 150 150 150 150 150 150 150 150 150	of M of Max from 00 oli z (Fi xximu xsing for cc vecto 2 3.5 60.0h ttartir es no ot ope	aximuximu the financial formula in the financi	um fired following the fired following the fired following the fired following the fired following followi	equency, code peed ue los electros o %	ency ency of unit work of the control of the contro	(at - ex.), p to 9 tems oncy AVR and and 10 to	-10 to 0.0299.99 (cont.) (document) (documen	20 +50 2Hz a 2Hz (0 0.003 arrol : : iith Dy	Binmai	at M at 60 to 48	que-v 100 100 100 g levviinpu	vecto O to 1 No lin No lin %	r cont 15% mit mit 200 to 10 t	ncy of at 120	of rate is o ope WD,	d) ded c cpera ratio (REV)	d abo	*1 *1 nt	2)	
Voltage Torque Startin Standa Using options	/freq /freq boo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time Duty c	haracteristic) g torque * ycle g torque ycle g torque	(111) s % s %	• Di • Ar • Di • Adju Torcc 0 0 1 2 2 2000 1 5 5 5	ustate to the control of the control	g sett settir se	t bas t can : AL : Ma : Ma : Ma : Ma : Ma 30 7	1/30 0.01 Sell 10.01 S	000 of 1Hz a ects /200	of M of Max from 00 oli z (Fi xximu xsing for cc vecto 2 3.5 60.0h ttartir es no ot ope	aximuximu the financial formula in the financi	um fired following the fired following the fired following the fired following the fired following followi	equency, code peed ue los electros o %	ency of u with e Fose aloa of time.	(at - ex.), p to 9 tems oncy AVR and and 10 to	-10 to 0.0299.99 s. ex.) (1 to	20 +50 2Hz a 2Hz (0 0.003 arrol : : iith Dy	Binmai	at M at 60 to 48	que-v 100 100 100 g levviinpu	vecto O to 1 No lin No lin %	r cont 15% mit mit % 0 10 to 10 to revisionment	ncy of at 120	of rate is o ope WD,	d) ded c cpera ratio (REV)	d abo	*1 *1 nt	2)	
Voltage Torque Startin Standa Using options DC inje	/freq /freq boo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time Duty c	haracteristic) g torque * ycle g torque ycle g torque	s %	• Di • Ari • Ari • Di • Ari • Di • Ari • Di • Ari • Di • Di • Ari • Di • Di • Ari • Di • Ari • Di • Ari • Di • Ari • Ari • Di • Ari • Di • Ari •	ustable ustabl	g sett settir se	ting: ting: ing: ting: ting: dispersion of the content of the cont	1/30 0.01 Sell 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000 of 1Hz a ects /200	of M of Max from 00 of it xximu sing for co con: vecto 7 3.5 60.0h ttartir es no ot ope 40	aximuximum the file Max xed) Imm from from from from from from from fr	um free following true states and the states are states as the states are states are states as the states are states are states as the states are stat	eque pency, code peece ue lo selectro 0% 8 4 4 kking ncy ve at til freque	ency of u with e Fose aloa of time.	(at - ex.), p to 9 tems noy AVR 2 and 31 10 10 10 10 10 10 10 10 10 10 10 10 10	-10 to 0.0299.99	ethorse of the control of the contro	Binmai	at M at 60 to 48	que-v 10 10 10 10 10 10 10 10 10 10 10 10 10	vecto O to 1 No lin No lin No lin vecto ti why ard tion c	r cont 15% mit mit % 0 10 to 10 to revisionment	ncy of at 120	of rate is o ope WD,	d) ded c cpera ratio (REV)	d abo	*1 *1 nt	2)	
Voltage Torque Startin Standa Using options DC inje	/freq /freq boo g tor CT use VT use	que *1 Brakin Time Duty c Brakin Time Duty c Brakin Time Duty c	haracteristic) g torque * ycle g torque ycle g torque	s %	• Di • Ari • Ari • Di • Ari • Di • Ari • Di • Di • Di • Ari • Di • D	ustate us	g sett settir se	t bass t can : Au : Ma	1/30 0.01 Sell 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ono of the area of	of M of Max from 00 of lz (Fi xximu xsing for cc varia prop con vecto 2 % 7 3.5 60.0h ttartir es no ot ope do Dire ecifica	aximuximu the f i Max xed) Im from from from from from from from fro	um firm free following free following free following free following free following free following free free following free free free free free free free fre	eque eque eque eque eque eque eque eque	ency ency of unit work of the transfer of the	(at - ex.) p to 9 tems nov AVR (at - ex.) and (at -	-10 to 0.0299.99	20 +50 PHz a PHz (0 0.0003 PHz (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Binman	at M at 60 a	aximi Hz, (100V) (que-1) (100	vecto O to 1 Vecto	r cont 15% mit mit % 0 10 to 10 to revisionment	at 120 ctrol se construction of the construc	ope WD,	d) d) d) deted c pera peratio REV)	d abo	*1 *1 nt	2)	
	FRN30 Nomin Maxim Rated Rated Overlo capabi Rated Phase: Voltag: Momer* *8) A Requir capaci Setting	FRN30G11S Nominal (C Maximum (' Rated capa Rated volta Rated curr Overload capability Rated frequ Phases, Vol Voltage / fro Momentary *7) Rated current *8) A Required p capacity (v Setting Carrier frequ	FRN30G11S-4EV Nominal (CT use) Maximum (VT use) Rated capacity *2 Rated voltage *3) Rated current *4) Overload Cont. (CT use) Rated frequency Phases, Voltage, F Voltage / frequency Momentary voltage *7) Rated CT current "8) A VT use Required power s capacity (with DC Maxim Setting Base f Startir Carrier frequency	Maximum (VT use) Rated capacity *2) Rated voltage *3) Rated current *4) Overload Cont. (VT use) Capability Short time *1) (CT use) Rated frequency Phases, Voltage, Frequency Voltage / frequency variations Momentary voltage dip capate *7) Rated CT (with DCR) current '8) A (without D'1 (with DCR) TY (with DCR) Required power supply capacity (with DCR) Required power supply capacity (with DCR) Maximum frequency Setting Base frequency Starting frequency Carrier frequency *9)	FRN30G11S-4EV *1) Nominal (CT use) kW (Maximum (VT use) kW (Maximum (VT use) kW (Maximum (VT use) kW (Maximum (VT use) kVA (Mated capacity *2) kVA (Mated current *4) A (Maximum (VT use) kMaximum (VT use) (CT use) (Maximum *1) (CT use) (Maximum (FRN30G11S-4EV *1)	Nominal (CT use) kW 0.4 0.75	Nominal (CT use) kW 0.4 0.75 1.5	Nominal (CT use) kW 0.4 0.75 1.5 2.2	Nominal (CT use) kW 0.4 0.75 1.5 2.2 4.0	Nominal (CT use) kW 0.4 0.75 1.5 2.2 4.0 5.5	Nominal (CT use) kW 0.4 0.75 1.5 2.2 4.0 5.5 7.5	Nominal (CT use) KW 0.4 0.75 1.5 2.2 4.0 5.5 7.5 11	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)	FRN30G11S-4EV *1)				

CT: Constant Torque VT: Variable Torque

NOTES:

Specifications for VT use are shown below.

Output ratings	Overload capablity	Short time	110% of rated current for 1min.
Control	Starting to	rque	50%

- Inverter output capacity (kVA) at 415V. Rated capacity reduces when power supply voltage decreases.
- Output voltage is proportional to the power supply voltage and cannot exeed the power supply voltage.
- Current derating may be required in case of low impedance loads such as high frequency motor.

 When the input voltage is 380 to 398V/50Hz or 380 to 430V/60Hz, the tap of the auxiliary transformer must be changed.
- Use a DC REACTOR (DCR) when the voltage unbalance exceeds 2%. (This value is equivalent to FUJI's conventional allowable value.

Voltage unbalance (%) = $\frac{\text{Max. voltage [V]} - \text{Min. Voltage [V]}}{\text{Three-phase average voltage[V]}} \times 67$ (Conforming to EN 61800-3 (5.2.3))

- Tested at standard load condition (85% load).
- This value is under FUJI original calculation method.

 Inverter may automatically reduce carrier frequency, in accordance with ambient temperature or output current for pretecting inverter.
- When torque boost is set at 0.1, starting torque of 50% or more can be obtained.
- *11) With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60Hz. (It may change according to motor loss.) *12) Consult with Fuji Electric.

FVR-E11S Series

1.2.1 Single-phase 200V FVR-E11S Series (JE)

Туре	FVR E11	S-7JE	0.1	0.2	0.4	0.75	1.5	2.2		
	applied motor	kW	0.1	0.2	0.4	0.75	1.5	2.2		
	Rated capacity *		0.30	0.57	1.1	1.9	3.0	4.1		
	Rated voltage *2) V		3-phase 200\	//50Hz 200, 2	220, 230V/60Hz					
Output	Rated current *3	•	0.8	1.5	3.0	5.0	8.0	11		
ratings		,	(0.7)	(1.4)	(2.5)	(4.0)	(7.0)	(10)		
•	Overload capabi	lity	150% of rated curre	ent for 1min. 200	% of rated current for	0.5s		, ,		
	Rated frequency	Hz	50, 60Hz							
	Phases, Voltage,	, Frequency	1-phase 200	to 240V 50/60	Hz					
	Voltage / frequer	ncy variations	Voltage: +10 to −1	0% Frequency: +5	5 to -5%					
	Momentary voltage	e dip capability *4)	When the input vo	When the input voltage is 165V or more, the inverter can be operated continuously.						
Input ratings			When the input voltage drops below 165V from rated voltage, the inverter can be operated for 15ms.							
			The smooth recovery mode is selectable (by Auto-restart function).							
raunys	Rated current *5)	(with DCR)	1.2	2.0	3.5	6.5	11.8	17.7		
	A	(without DCR)	2.3	3.9	6.4	11.4	19.8	28.5		
	Required power		0.3	0.4	0.7	1.3	2.4	3.6		
	supply capacity	*6) kVA				1.5	2.4	3.0		
Control	Starting torque		200% (with Dynan	nic torque-vector con	trol selected)					
	Braking torque (Standard) *7)	100		70			40		
Braking	Braking torque (Using options)	150							
	DC injection bra	king	Starting frequency	: 0.0 to 60.0Hz B	raking time: 0.0 to 30	0.0s Braking level:	0 to 100% of rated c	urrent		
Enclosu	re (IEC 60529)		IP 20							
Cooling	method		Natural cooling				Fan cooling			
					MC Directive -TÜV					
Standard	ds					able frequency a.c. p	ower drive systems)			
			<u> </u>		ncluding specific test					
Mass		kg	0.6	0.7	0.7	1.2	1.8	1.9		

NOTES:

^{*1)} Inverter output capacity (kVA) at 220V in 200V series. *2) Output voltage cannot exceed the power supply voltage. *3) Current derating may be required in case of low impedance loads such as high frequency motor. Use the inverter at the current () or below where carrier frequency setting is higher than 4kHz (F26: 4 to 15) or the amb. temp. is 40°C or higher. *4) Tested at standard load condition (85% load). *5) This value is under FUJI original calculation method. (Refer to Chapter 3, P3-2 Information.) *6) When optional power-factor correcting DC REACTOR (DCR) is used. *7) With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60 Hz. (It may change according to motor loss.)

1. Standard Specifications

1.2.2 Three-phase 400V FVR-E11S Series (JE) available soon

				1 ~ 4	0.75	4 -	100		1		
Туре		□□E11S-4、		0.4	0.75	1.5	2.2	3.7	5.5		7.5
Nominal	applied n	notor	kW	0.4	0.75	1.5	2.2	3.7	5.5		7.5
	Rated ca	apacity *1)	kVA	1.1	1.9	2.8	4.1	6.8	9.9		13
	Rated vo	oltage *2)	V	3-phase 380.	400. 415V/50Hz.	380, 400, 440, 460	V/60Hz	'	'		
Output		urrent *3)	A	1.5	2.5	3.7	5.5	9.0	13		18
ratings	Tialeu Ci	arrent o)	^	(1.4)	(2.1)	(3.7)	(5.3)	(8.7)	(12)	.	(16)
raunys	0			· /				(0.7)	[(12,		(10)
		d capability			current for 1min.	200% of rated co	urrent for 0.5s				
	Rated fr	equency	Hz	50, 60Hz							
	Phases,	Voltage, Fr	equency	3-phase	380 to 480V	50/60Hz					
	Voltage	/ frequency	variations	Voltage: +10	to -15% (Voltage	unbalance *4): 2%	or less) Fred	quency: +5 to -	-5%		
			p capability *5)			or more, the inverte					
	WOITIGITE	ily voitage ui	p capability 3)			elow 300V from rate				or 15mc	
Input									be operated i	or roms.	
ratings						electable (by Auto-			1		
	Rated cu		vith DCR)	0.82	1.5	2.9	4.2	7.1	10.0		13.5
		A (w	vithout DCR)	1.8	3.5	6.2	9.2	14.9	21.	5	27.9
	Require	d power									
	supply o	apacity *7)	kVA	0.6	1.1	2.1	3.0	5.0	7.0		9.4
Control	Starting			200% (with D	vnamic torque-vec	tor control selected	4)				
Control	Starting		****	· · ·	ynamic torque-vec	tor control selected	_		100		
		Braking to	orque *8)	70			40		20		
	Standard	Time	S				No limit	<u> </u>			
		Duty cycle	%ED				No limit				
			Braking torque	1			150				
		Juliualu		15				loo		1	10
Braking	Using			45			30	20			10
,	options		Duty cycle %ED	22	18	10	7	5			
	*9)	10%ED	Braking torque			<u> </u>	150				
	'		Time s	45			30	20			10
			Duty cycle %ED				10	1-*			
	DC inios	tion braking			2224 0 0 to 60 0L	la Drokina timo		Droking love	l. 0 to 1000/	of rated curre	.+
			<u>y </u>		ency: 0.0 to 60.0H	Iz Braking time:	0.0 10 30.08	braking leve	1. 0 10 100%	or rated curren	IL
	re (IEC 60	529)		IP 20							
Cooling	method			Natural coolin	0	Fan cooling					
				-UL/cUL -La	w Voltage Directiv	ve -EMC Directive	e -TÜV				
Standard	ds			-IEC 61800-2	(Ratings, specific	ations for low voltag	ge adjustable f	frequency a.c.	power drive s	systems)	
				-IEC 61800-3	(EMC product sta	ndard including spe	ecific test meth	nods)	•	•	
Mass			kg	1.1	1.2	1.3	1.4	1.9	4.5		4.5
			9	1		1.0	1	1.0	1.0		1.0
123	Three-	nhase 2	00V FVR-E	11S Serie	s (JF)						
					<u> </u>	1.		1			
Туре		E11S-2J			0.2 0.4	0.75	1.5	2.2	3.7	5.5	7.5
Nominal a	applied mo	otor	kW	0.1	0.2 0.4	0.75	1.5	2.2	3.7	5.5	7.5
	Rated ca	pacity *1)	kVA	0.30	0.57 1.1	1.9	3.0	4.2	6.5	9.5	12.5
	Rated vo	Itage *2)	V	3-phase	200V/50Hz	200, 220, 230V/60I		<u> </u>	1		_
Output	Rated cu		A		1.5 3.0	5.0	8.0	11	17	25	33
ratings	l Haicu cu		^					1			
					(1.4)	(4.0)		(10)	l (16.5)	(23.5)	1(31)
·uunya	Overload			` '	(1.4) (2.5)	(4.0)	(7.0)	(10)	(16.5)	(23.5)	(31)
.uunyo		capability		150% of rated of	, ,	(4.0) 200% of rated currer	(7.0)	(10)	(16.5)	(23.5)	(31)
·uuiiyə	Rated fre	capability quency	Hz	150% of rated of 50, 60Hz	current for 1min.	200% of rated currer	(7.0)	(10)	(16.5)	(23.5)	[(31)
·uuiiyə	Rated fre	capability quency /oltage, Fred	quency	150% of rated of 50, 60Hz 3-phase 2	current for 1min.	200% of rated currer	(7.0) nt for 0.5s		(16.5)	(23.5)	(31)
·uuiiyə	Rated fre	capability quency	quency	150% of rated of 50, 60Hz 3-phase 2	current for 1min.	200% of rated currer	(7.0) nt for 0.5s		(16.5)	(23.5)	(31)
. auriyə	Rated fre Phases, Voltage /	capability quency /oltage, Fred	quency ariations	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input	200 to 230V 5 0 –15% (Voltage unlt voltage is 165V or	200% of rated currer 0/60Hz balance *4): 2% or le	(7.0) Int for 0.5s Ess) Frequence an be operated	cy: +5 to -5% continuously.			[(31)
	Rated fre Phases, Voltage /	capability quency /oltage, Fred frequency v	quency ariations	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input	200 to 230V 5 0 –15% (Voltage unit voltage is 165V or tvoltage drops belo	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v	(7.0) Int for 0.5s	cy: +5 to -5% continuously.			(31)
Input	Phases, Voltage / Momentar	capability quency /oltage, Frec frequency voltage dip	quency ariations capability *5)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth rev	current for 1min. 200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is sele	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v catable (by Auto-resta	(7.0) Int for 0.5s	cy: +5 to -5% continuously.	rated for 15m	S.	
	Rated fre Phases, Voltage /	capability quency /oltage, Frec frequency voltage dip	quency ariations	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth rev	200 to 230V 5 0 –15% (Voltage unit voltage is 165V or tvoltage drops belo	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v	(7.0) Int for 0.5s	cy: +5 to -5% continuously.			26.9
Input	Phases, Voltage / Momentar	capability quency /oltage, Frec frequency v y voltage dip	quency ariations capability *5)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reconstruction of the smooth reconstruc	current for 1min. 200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is sele	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v catable (by Auto-resta	(7.0) Int for 0.5s	cy: +5 to -5% continuously.	rated for 15m	S.	
Input	Phases, Voltage / Momentar	capability quency /oltage, Frec frequency v. y voltage dip rent *6) (w	quency ariations capability *5) ith DCR)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth rer 0.59 (1.1)	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is sele 0.94 1.6 1.8 3.4	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v ctable (by Auto-resta 3.1 6.4	(7.0) Int for 0.5s Interest of the for o.5s Interest of the format of the format function of the function of the format function of the format function of the format function of the format function of the function of the format function of the function of	ey: +5 to -5% continuously. enter can be ope	rated for 15m 14.0 25.5	s. 19.7 40.8	26.9 52.6
Input	Phases, Voltage / Momentar Rated cur Required	capability quency /oltage, Frec frequency v. y voltage dip rent *6) (w A (w power	quency ariations capability *5) ith DCR)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth rer 0.59 (1.1)	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selections)	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated vioctable (by Auto-resta	(7.0) Int for 0.5s	cy: +5 to -5% continuously. enter can be ope	rated for 15m	s. 19.7	26.9
Input ratings	Rated free Phases, Voltage / Momentar Rated cur Required supply ca	capability quency /oltage, Fred frequency v y voltage dip rent *6) (w	quency ariations capability *5) ith DCR) ithout DCR)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reco.59 1.1 0.3	200 to 230V 5 0 –15% (Voltage unit voltage is 165V or t voltage drops belo covery mode is sele 0.94 1.6 1.8 3.4 0.4 0.6	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) Int for 0.5s Interest of the for o.5s Interest of the format of the format function of the function of the format function of the format function of the format function of the format function of the function of the format function of the function of	ey: +5 to -5% continuously. enter can be ope	rated for 15m 14.0 25.5	s. 19.7 40.8	26.9 52.6
Input	Phases, Voltage / Momentar Rated cur Required	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque	quency ariations capability *5) ith DCR) ithout DCR)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth records 1.1 0.3 (4) 200% (with Dynamics)	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selections) 1.8 3.4 0.4 0.6 namic torque-vector	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) Int for 0.5s Interest of the for o.5s Interest of the format of the format function of the function of the format function of the format function of the format function of the format function of the function of the format function of the function of	coy: +5 to -5% continuously. enter can be ope 8.3 16.1 2.9	rated for 15m 14.0 25.5	s. 19.7 40.8 6.9	26.9 52.6
Input ratings	Rated free Phases, Voltage / Womentar Rated cur Required supply ca	capability quency /oltage, Fred frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to	quency ariations capability *5) ith DCR) ithout DCR) kVA prque *8)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reco.59 1.1 0.3	200 to 230V 5 0 –15% (Voltage unit voltage is 165V or t voltage drops belo covery mode is sele 0.94 1.6 1.8 3.4 0.4 0.6	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) It for 0.5s Frequence an be operated obligae, the inverse function). 5.7 11.1 2.0	cy: +5 to -5% continuously. enter can be ope 8.3 16.1 2.9	rated for 15m 14.0 25.5	s. 19.7 40.8	26.9 52.6
Input ratings	Rated free Phases, Voltage / Momentar Rated cur Required supply ca	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to	quency ariations capability *5) ith DCR) ithout DCR) kVA prque *8) s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth records 1.1 0.3 (4) 200% (with Dynamics)	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selections) 1.8 3.4 0.4 0.6 namic torque-vector	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) It for 0.5s Ess) Frequence an be operated obliage, the inverted function). 5.7 11.1 2.0	ey: +5 to -5% continuously. enter can be ope 8.3 16.1 2.9	rated for 15m 14.0 25.5	s. 19.7 40.8 6.9	26.9 52.6
Input ratings	Rated free Phases, Voltage / Womentar Rated cur Required supply ca	capability quency /oltage, Fred frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to	quency ariations capability *5) ith DCR) ithout DCR) kVA prque *8) s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth records 1.1 0.3 (4) 200% (with Dynamics)	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selections) 1.8 3.4 0.4 0.6 namic torque-vector	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) It for 0.5s Frequence an be operated obligae, the inverse function). 5.7 11.1 2.0	ey: +5 to -5% continuously. enter can be ope 8.3 16.1 2.9	rated for 15m 14.0 25.5	s. 19.7 40.8 6.9	26.9 52.6
Input ratings	Rated free Phases, Voltage / Womentar Rated cur Required supply ca	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle	quency ariations capability *5) ith DCR) ithout DCR) kVA prque *8) s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth records 1.1 0.3 (4) 200% (with Dynamics)	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selections) 1.8 3.4 0.4 0.6 namic torque-vector	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) It for 0.5s Ess) Frequence an be operated obliage, the inverse function). 5.7	ey: +5 to -5% continuously. enter can be ope 8.3 16.1 2.9	rated for 15m 14.0 25.5	s. 19.7 40.8 6.9	26.9 52.6
Input ratings	Rated fre Phases, Voltage / Momentar Rated cur Required supply ca Starting t	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth records 1.1 0.3 (200% (with Dyn 100)	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selection. 1.8 3.4 0.4 0.6 namic torque-vector. 70	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) It for 0.5s It for 0.5s It for 0.5s It for 0.5s Frequence of the inverse of the invers	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9	rated for 15m 14.0 25.5 4.9	s. 19.7 40.8 6.9	26.9 52.6 9.4
Input ratings	Rated free Phases, Voltage / Womentar Rated cur Required supply ca	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth red 0.59 1.1 0.3 (200% (with Dynamics) 100	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selection. 1.6 1.8 3.4 0.4 0.6 namic torque-vector 70	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated viotable (by Auto-resta 3.1 6.4 1.1 r control selected)	(7.0) It for 0.5s	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9 40	rated for 15m 14.0 25.5 4.9	s. 19.7 40.8 6.9	26.9 52.6
Input ratings	Rated fre Phases, Voltage / Momentar Rated cur Required supply ca Starting t	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth red 0.59 1.1 0.3 (200% (with Dynamics) 100	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selection. 1.8 3.4 0.4 0.6 namic torque-vector. 70	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated visctable (by Auto-resta 3.1 6.4 1.1	(7.0) It for 0.5s It for 0.5s It for 0.5s Frequence an be operated oltage, the inverse art function). 5.7	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9	rated for 15m 14.0 25.5 4.9	s. 19.7 40.8 6.9	26.9 52.6 9.4
Input ratings	Rated free Phases, Voltage / Momentar Rated cur Required supply ca Starting t Standard Using	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth red 0.59 1.1 0.3 (200% (with Dynamics) 100	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or voltage drops belocovery mode is selection. 1.8 3.4 0.4 0.6 namic torque-vector 45 22	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated viotable (by Auto-resta 3.1 6.4 1.1 r control selected)	(7.0) It for 0.5s	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9 40	rated for 15m 14.0 25.5 4.9	s. 19.7 40.8 6.9	26.9 52.6 9.4
Input ratings	Rated free Phases, Voltage / Momentar Rated cur Required supply ca Starting t Standard Using options	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth red 0.59 1.1 0.3 (200% (with Dynamics) 100	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selection. 1.6 1.8 3.4 0.4 0.6 namic torque-vector 70	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated viotable (by Auto-resta 3.1 6.4 1.1 r control selected)	(7.0) It for 0.5s It for 0.5s It for 0.5s Frequence an be operated oltage, the inverse art function). 5.7	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9 40	rated for 15m 14.0 25.5 4.9	s. 19.7 40.8 6.9	26.9 52.6 9.4
Input ratings	Rated free Phases, Voltage / Momentar Rated cur Required supply ca Starting t Standard Using options	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reconstruction of the following services of the followi	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or voltage drops belocovery mode is selection. 1.8 3.4 0.4 0.6 namic torque-vector 45 22	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated viotable (by Auto-resta 3.1 6.4 1.1 r control selected)	(7.0) It for 0.5s It for 0.5s It for 0.5s Frequence an be operated oltage, the inverse art function). 5.7	2y: +5 to -5% continuously. refer can be ope 8.3 16.1 2.9 40	rated for 15m 14.0 25.5 4.9	s. 19.7 40.8 6.9	26.9 52.6 9.4
Input ratings	Rated free Phases, Voltage / Momentar Rated cur Required supply constraining to Starting t	capability quency /oltage, Frec frequency v y voltage dip rent *6) (w A (w power apacity *7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA prque *8)	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reconstruction of the following states of the following s	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is sele 0.94 1.6 1.8 3.4 0.4 0.6 namic torque-vector 45 22	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v ectable (by Auto-resta 3.1 6.4 1.1 r control selected)	(7.0) It for 0.5s	2y: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9 40 30 7	rated for 15m 14.0 25.5 4.9 20 5	s. 19.7 40.8 6.9 20	26.9 52.6 9.4
Input ratings Control Braking	Rated free Phases, Voltage / Momentar Rated cur Required supply constraints of Standard Using options *9)	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reconstruction of the following states of the following starting frequency in the following starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting frequency is a specific starting frequency in the following starting starting starting star	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or voltage drops belocovery mode is selection. 1.8 3.4 0.4 0.6 namic torque-vector 45 22	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated viotable (by Auto-resta 3.1 6.4 1.1 r control selected)	(7.0) It for 0.5s	2y: +5 to -5% continuously. refer can be ope 8.3 16.1 2.9 40	rated for 15m 14.0 25.5 4.9 20 5	s. 19.7 40.8 6.9 20	26.9 52.6 9.4
Input ratings Control Braking	Rated free Phases, Voltage / Momentar Rated cur Required supply co Starting to Standard Using options *9) DC inject e (IEC 605)	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reconstruction of the following starting freque IP 20	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is sele 0.94 1.6 1.8 3.4 0.4 0.6 namic torque-vector 70 45 22	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v ectable (by Auto-resta 3.1 6.4 1.1 r control selected)	(7.0) Int for 0.5s Interpolation (7.0) Int for 0.5s Interpolation (7.0) Interpolatio	ey: +5 to -5% continuously. enter can be ope 8.3 16.1 2.9 40 30 7	rated for 15m 14.0 25.5 4.9 20 5	s. 19.7 40.8 6.9 20	26.9 52.6 9.4
Input ratings Control Braking	Rated free Phases, Voltage / Momentar Rated cur Required supply co Starting to Standard Using options *9) DC inject e (IEC 605)	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth reconstruction of the smooth reconstruc	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is sele 0.94 1.6 1.8 3.4 0.4 0.6 namic torque-vector 70 45 22 45 ncy: 0.0 to 60.0Hz	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v ctable (by Auto-resta 3.1 6.4 1.1 r control selected) 18 Braking time: 0.0 to	(7.0) Int for 0.5s Interpretation (7.0) I	ey: +5 to -5% continuously. enter can be ope 8.3 16.1 2.9 40 30 7	rated for 15m 14.0 25.5 4.9 20 5	s. 19.7 40.8 6.9 20	26.9 52.6 9.4
Input ratings Control Braking Enclosure Cooling n	Rated free Phases, Voltage / Momentar Rated cur Required supply ca Starting t Standard Using options *9) DC injecte (IEC 605: nethod	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth records 1.1 0.3 0 200% (with Dyn 100 90 37 90 Starting freque IP 20 Natural cooling -UL/cUL -Lov	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or t voltage drops belocovery mode is selection of the voltage drops drop	200% of rated currer 0/60Hz colaince *4): 2% or le more, the inverter ca w 165V from rated v cotable (by Auto-resta 3.1 6.4 1.1 control selected) 18 Braking time: 0.0 in -EMC Directive	(7.0) It for 0.5s It for 0.5s Frequence In be operated obliage, the inverse of function). 5.7 11.1 2.0 No limit No limit 150 10 150 10 150 Fan cooling TÜV	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9 40 30 7 30 king level: 0 to	20 5 20 100% of rated	s. 19.7 40.8 6.9 20 current	26.9 52.6 9.4
Input ratings Control Braking	Rated free Phases, Voltage / Momentar Rated cur Required supply ca Starting t Standard Using options *9) DC inject e (IEC 605: nethod	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth ref 0.59 1.1 0.3 200% (with Dyi 100 90 37 90 Starting freque IP 20 Natural cooling -UL/cUL -Lov -IEC 61800-2 (200 to 230V 5 0 -15% (Voltage unit voltage is 165V or voltage drops belocovery mode is selection of the voltage from the voltage drops belocovery mode is selection of the voltage drops belocovery mode in the voltage drops belocovery drops belocovery mode in the voltage drops belocovery drops beloco	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v vectable (by Auto-resta 3.1 6.4 1.1 r control selected) 18 Braking time: 0.0 in -EMC Directive ons for low voltage ar	(7.0) t for 0.5s sss) Frequence an be operated oltage, the inverse structure	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9 40 30 7 30 king level: 0 to	20 5 20 100% of rated	s. 19.7 40.8 6.9 20 current	26.9 52.6 9.4
Input ratings Control Braking Enclosure Cooling n	Rated free Phases, Voltage / Momentar Rated cur Required supply ca Starting t Standard Using options *9) DC inject e (IEC 605: nethod	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) S %ED Braking torque Time S Duty cycle %ED Braking torque Time S Duty cycle %ED	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth ref 0.59 1 1.1 0.3 0 200% (with Dyn 100 100 100 100 100 100 100 100 100 10	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or voltage drops belocovery mode is selection of the voltage from the voltage drops belocovery mode is selection of the voltage drops belocovery mode in voltage drops belocovery drops belocovery mode in voltage drops belocovery drops drops belocovery drops belocovery drops belocovery drops belocovery drops belocove	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v cotable (by Auto-resta 3.1 6.4 1.1 r control selected) 18 Braking time: 0.0 in -EMC Directive cons for low voltage ar ard including specific	(7.0) t for 0.5s sss) Frequence an be operated oltage, the inverse structure	2y: +5 to -5% continuously. refer can be ope 8.3 16.1 2.9 40 30 7 30 king level: 0 to	rated for 15m 14.0 25.5 4.9 20 5 20 100% of rated	ss. 19.7 40.8 6.9 20 current	26.9 52.6 9.4
Input ratings Control Braking Enclosure Cooling n	Rated free Phases, Voltage / Momentar Rated cur Required supply ca Starting t Standard Using options *9) DC inject e (IEC 605: nethod	capability quency /oltage, Fred frequency v y voltage dip rent*6) (w A (w power apacity*7) orque Braking to Time Duty cycle Standard	quency ariations capability *5) ith DCR) ithout DCR) kVA orque *8) s %ED Braking torque Time s Duty cycle %ED Braking torque Time s	150% of rated of 50, 60Hz 3-phase 2 Voltage: +10 to When the input When the input The smooth ref 0.59 1 1.1 0.3 0 200% (with Dyn 100 100 100 100 100 100 100 100 100 10	200 to 230V 5 0 -15% (Voltage unit voltage is 165V or voltage drops belocovery mode is selection of the voltage from the voltage drops belocovery mode is selection of the voltage drops belocovery mode in the voltage drops belocovery drops belocovery mode in the voltage drops belocovery drops beloco	200% of rated currer 0/60Hz balance *4): 2% or le more, the inverter ca w 165V from rated v vectable (by Auto-resta 3.1 6.4 1.1 r control selected) 18 Braking time: 0.0 in -EMC Directive ons for low voltage ar	(7.0) t for 0.5s sss) Frequence an be operated oltage, the inverse structure	ey: +5 to -5% continuously. erter can be ope 8.3 16.1 2.9 40 30 7 30 king level: 0 to	20 5 20 100% of rated	s. 19.7 40.8 6.9 20 current	26.9 52.6 9.4

NOTES:

^{*1)} Inverter output capacity (kVA) at 440V in 400V series, 220V in 200V series. *2) Output voltage cannot exceed the power supply voltage. *3) Current derating may be required in case of low impedance loads such as high frequency motor. Use the inverter at the current () or below where carrier frequency setting is higher than 4kHz (F26: 4 to 15) or the amb. temp. is 40°C or higher. *4) Refer to the IEC 61800-3 (5.2.3). *5) Tested at standard load condition (85% load). *6) This value is under FUJI original calculation method. (Refer to Chapter 3, P3-2) *7) When optional power-factor correcting DC REACTOR (DCR) is used. *8) With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60 Hz. (It may change according to motor loss.) *9) When optional external braking resistor is used.

1. Standard Specifications

1.2.4 Three-phase 400V FVR-E11S Series (EN) available soon

					(=::, =:=					
Туре	FVR□	□□E11S-4	4EN	0.4	0.75	1.5	2.2	4.0	5.5	7.5
Nominal	applied n	notor	kW	0.4	0.75	1.5	2.2	4.0	5.5	7.5
	Rated ca	apacity *1)	kVA	1.0	1.7	2.6	3.9	6.4	9.3	12
		oltage *2)	V		-	2, 380, 400, 440, 46				
•	Rated cu	urrent *3)	Α	1.5	2.5	3.7	5.5	9.0	13	18
atings				(1.4)	(2.1)	(3.7)	(5.3)	(8.7)	(12)	(16)
Type		d capability		150% of rated co	urrent for 1min.	200% of rated	current for 0.5s			
	Rated from		Hz	50, 60Hz						
		Voltage, F			80 to 480V	50/60Hz				
			y variations	Voltage: +10 to	-15% (Voltage	e unbalance *4): 2°	% or less) Frequency	iency: +5 to -	5%	
•	Momenta	ry voltage d	lip capability *5)	When the input	voltage drops	V or more, the invested below 300V from reselectable (by Aut	ated voltage, the	inverter can b		ns.
aungs	Rated cu	rrent *6) (with DCR)	0.82	1.5	2.9	4.2	7.1	10.0	13.5
		Α (without DCR)	1.8	3.5	6.2	9.2	14.9	21.5	27.9
	Require	d power		0.6	1.1	2.1	3.0	5.0	7.0	9.4
		apacity *7) kVA					5.0	7.0	9.4
Control	Starting				amic torque-v	ector control select				
		Braking	· · · · · · · · · · · · · · · · · · ·	70			40		20	
	Standard		s				No limit			
		Duty cycle	e %ED	<u> </u>			No limit			
		Standard	Braking torque				150			
Braking	Using		Time s	45			30	20		10
uning	options	10%ED	Duty cycle %ED	22	18	10	7	5		·
	*9)			Braking torque		•		150		
	'		Time s	45			30	20		10
			Duty cycle %ED				10			
	DC injec	tion brakir	ng	Starting frequer	icy: 0.0 to 60.0	OHz Braking time	e: 0.0 to 30.0s	Braking level	: 0 to 100% of rate	d current
Enclosur	re (IEC 60	529)		IP 20						
Cooling	method			Natural cooling		Fan cooling				
Standard	is			-EN 61800-2 (R	atings, specifi	ctive -EMC Direct cations for low volt andard including s	age adjustable fre		oower drive system	s)
Mass			kg	1.1	1.2	1.3	1.4	1.9	4.5	4.5
.2.5	Single-	phase	200V FVR-E	E11S Series	(EN)					
Туре	FVR	□□E11S-7	7EN	0.1	0.2	0.4	0.75	i	1.5	2.2
Nominal	applied n	notor	kW	0.1	0.2	0.4	0.7	i	1.5	2.2
	Rated ca	apacity *1)	kVA	0.31	0.59	1.1	1.9		3.1	4.3
	Rated vo	oltage *2)	V	3-phase 20	00V/50Hz	200, 220, 230V	/60Hz			
Output	Rated co	urrent *3)	Α	0.8	1.5	3.0	5.0		8.0	11
ratings				(0.7)	(1.4)	(2.5)	(4.0)	(7.0)	(10)
		d capabilit	у	150% of rated c	urrent for 1min.	200% of rated	current for 0.5s			
		equency	Hz	50, 60Hz						
· <u></u>			requency		00 to 240V					
	Voltage	/ frequenc	y variations			quency: +5 to -5%				
	Momenta	ry voltage o	dip capability *5)	When the input	voltage drops	iV or more, the inverse below 165V from its selectable (by Aut	ated voltage, the	inverter can b		ns.
ratings	Rated cu	rrent *6) (with DCR)	1.2	2.0	3.5	6.5		11.8	17.7
			without DCR)	2.3	3.9	6.4	11.4		19.8	28.5
		d power apacity *7	,	0.3	0.4	0.7	1.3		2.4	3.6
Control	Starting	torque		200% (with Dyr	amic torque-v	ector control selec	red)		<u> </u>	
	Braking	torque (St	andard) *8)	100		70				40
Braking	Braking	torque (Us	sing options)	150						
	DC injec	tion brakir	ng	Starting frequer	ncy: 0.0 to 60.0	OHz Braking tim	e: 0.0 to 30.0s	Braking level	: 0 to 100% of rate	d current
Enclosu	re (IEC 60	529)		IP 20						
Cooling	method			Natural cooling					Fan cooling	
Standard				-EN 61800-2 (F	atings, specifi	ctive -EMC Direct cations for low volt tandard including s	age adjustable fr		oower drive system	ns)
Mass			kg	0.6	0.7	0.7	1.2	,	1.8	1.9
			9	1	1				1	1

NOTES

Conformity to Low Voltage Directive The FRENIC5000G11S/P11S and FVR-E11S Series conforms to the Low Voltage Directive with EN50178. Conformity to EMC Directive • Emission requirement Foot mount filters in compliance with EN61800-3 are provided for all models (Option). • Immunity requirement The FRENIC5000G11S/P11S and FVR-E11S Series inverters meet EN61800-3 as standard.

^{*1)} Inverter output capacity (kVA) at 415V in 400V series, 230V in 200V series. *2) Output voltage cannot exceed the power supply voltage. *3) Current derating may be required in case of low impedance loads such as high frequency motor. Use the inverter at the current () or below where carrier frequency setting is higher than 4kHz (F26: 4 to 15) or the amb. temp. is 40°C or higher. *4) Refer to the IEC 61800-3 (5.2.3). *5) Tested at standard load condition (85% load). *6) This value is under FUJI original calculation method. (Refer to Chapter 3, P3-2) *7) When optional power-factor correcting DC REACTOR (DCR) is used. *8) With a nominal applied motor, this value is average torque when the motor decelerates and stops from 60 Hz. (It may change according to motor loss.)

2. Common Specifications

2. Common Specifications2.1 Outline of common specifications2.1.1 FRENIC5000G11S/P11S Series

	Item	Explanation	Remarks	Func. code
rol	Control method	V/f control (Sinusoidal PWM control) Dynamic torque-vector control (Sinusoidal PWM control) Vector control with PGG11S only	Option card (PG/Hz) required.	F42, A09
	Operation method	KEYPAD operation: Forward or reverse operation by FWD or REV key Stopping by STOP key Digital input signal operation: FWD-STOP command, REV-STOP command, Coast-to-stop	Switching between KEYPAD operation and digital input signal operation is enabled by pressing STOP key and RESET key at the same time.	F02
		command, etc. • LINK operation : • RS485 (standard) • Various Bus interface is available. (Option) • T-Link (FUJI private link) • Profibus-DP • Modbus Plus • Interbus-S • JPCN1	(LE)	H30 to H39
	Frequency setting (Frequency command)	KEYPAD operation :	Connect to terminals 13, 12, and 11. Set Function code at "F01: 1". Potentiometer is required separately.	F01
		Analog input : External voltage or current input 0 to +10Vdc (0 to +5Vdc) 4 to 20mAdc (Reversible : Reversible operation by polarized signal can be operation) oto ± 10Vdc (0 to ± 5Vdc) (Inverse : Inverse mode operation can be selected by operation) digital input signal (IVS). 0 to +10Vdc → 10 to 0Vdc (terminal 12) 4 to 20mAdc → 20 to 4mAdc (terminal C1)	0 to +5Vdc, 0 to ±5Vdc input is enabled when Func. code 17 (Gain for frequency setting) is set at 200.0%.	
		UP/DOWN control: Output frequency increases when UP signal is ON, and decreases when DOWN signal is ON.	(UP, DOWN)	
		Multistep frequency selection: Up to 16 different frequencies can be selected by digital input signal. Pulse train input : 0 to 100kp/s	(SS1, SS2, SS4, SS8) Option card (PG/SY) required.	C05 to C19
		Digital signal (parallel) : 12-bit parallel (12-bit binary) signal can be input.	Option card (PG/S1) required. Option card (DIO) required.	
		LINK operation (Option) (Option	(LE) Option card for open networks CAN open (EN only)	H31 to H39
		Programmed PATTERN operation : Max. 7 stages	<stg1, stg2,="" stg4,="" to="" tu,=""></stg1,>	F01 C21 to C28
	Jogging operation	This operation can be performed by KEYPAD opration (FWD , REV key) or digital input signal (FWD or REV).	To enter jogging operation mode: Press TOP key and key at the same time. Digital input signal: (JOG) During jogging operation, an indicator at "JOG" is lit on the LCD monitor.	C20 F02
	Running status signal	Transistor output : RUN, FAR, FDT, OL, LU, TL, etc. (4 points) (4 output types are selectable)		E20 to E23
		Relay output : • Same as transistor output. (2 points) • Alarm output (for any fault)		F36 E24, E25
		Analog output : Output frequency, Output current, (1 point) Output voltage, Output torque, etc.		F31
		Pulse output : Output frequency, Output current, (1 point) Output voltage, Output torque, etc.		F35
	Acceleration/	0.01 to 3600s	Coast-to-stop is selectable by Function code "H11".	F07, F08
	Deceleration time	Four kinds of acceleration and deceleration times can be set independently, and the desired time is selected by combining digital input signal (2 points).	(RT1, RT2)	E10 to E15
		Selects acceleration/deceleration pattern from the following 4 types. • Linear • S-curve (weak) • S-curve (strong) • Non-linear (for variable torque load)		H07
	Active drive	When the acceleration time reaches 60s, the motor output torque is automatically reduced to rated torque. Then the motor operation mode is changed to torque limiting operation.	The acceleration time is automatically extended up to 3 times.	H19
	Frequency limiter	High and Low frequency limiters can be preset.		F15, F16

NOTE: () or < > in the "Remarks" column indicates the abbreviation of terminal function assigned to digital input terminals X1 to X9 and transistor output terminals Y1 to Y5C.

	Item	Explanation	Remarks	Func. code
ontrol	Bias frequency	Bias frequency can be preset.	When the sum of setting frequency and bias frequency is minus value, the output frequency rise can be delayed. (No reverse running is performed.)	F18
	Gain for frequency setting	Gain for frequency setting can be preset. (0.0 to 200.0%) ex.) Analog input 0 to +5Vdc with 200% gain results in Maximum frequency at 5Vdc.		F17
	Jump frequency control	Jump frequency (3 points) and its common jump hysteresis width (0 to 30Hz) can be preset.		C01 to C04
	Rotating motor pick up (Flying start)	A rotating motor(including inverse rotating mode) can be smoothly picked up without stopping the motor. (speed search method)	(STM)	H09
	Auto-restart after momentary power failure	Automatic restart is available without stopping motor after a momentary power failure. (speed search method) When "Smooth recovery" mode is selected, the motor speed drop is held minimum.	The inverter searches the motor speed, and smoothly returns to setting frequency. Even if the motor circuit is temporarily opened, the inverter operates without a hitch.	F14 H13 to H16
	Line/Inverter changeover operation	Controls switching operation between line power and inverter. The inverter has sequence function inside.	(SW50, SW60) <sw88, sw52-1,="" sw52-2=""></sw88,>	E01 to E09 E20 to E24, H1
	Slip compensation	The inverter output frequency is controlled according to the load torque to keep motor speed constant. When the value is set at "0.00" and "Torque-vector" is set at "active", the compensation value automatically selects the Fuji standard motor.	Slip compensation value can be manually set from 0.01 to 5.00Hz instead of 0.0 for FUJI standard motor.	P09
		Slip compensation can be preset for the second motor.		A18
	Droop operation	The motor speed droops in proportional to output torque.(-9.9 to 0.0Hz)G11S only	P11S series doesn't have this function.	H28
	Torque limiting	When the motor torque reaches a preset limiting level, this function automatically adjusts the output frequency to prevent the inverter from tripping due to an overcurrent. Torque limiting 1 and Torque limiting 2 can be individually set, and	(TL2/TL1)	F40, F41
		are selectable with a digital input signal.	(112/111)	E16, E17
	Torque control	Output torque (or load factor) can be controlled with an analog input signal (terminal 12).	Torque polarity selectable. (Hz/TRQ) P11S series doesn't have this function.	H18
	PID control	This function can control flowrate, pressure, etc. (with an analog feedback signal.) • Reference signal • KEYPAD operation (PID control is selected by "H20". (Hz/PID). Reference signal selection is made by "F01". In "F01", "8: UP/DOWN control 1", "9: UP/DOWN control 2", and "11: Pulse train input" cannot be used for the reference signal of PID control.	H20 to H25
		Reversible operation with polarity (terminal 12 + V1): 0 to ± 10Vdc / 0 to ± 100% Inverse mode operation (terminal 12 and V2): 10 to 0Vdc / 0 to 100% Inverse mode operation (terminal C1): 20 to 4mAdc / 0 to 100% PATTERN operation: Setting freq. / Maximum freq. X 100 [%] DI option input: BCDSetting freq. / Maximum freq. X 100 [%] BinaryFull scale / 100%	Terminal V1 is optional. Terminal V2: EN only	
		Multistep frequency setting : Setting freq. / Maximum freq. X 100 [%] RS485 : Setting freq. / Maximum freq. X 100 [%]		C05 to C19
		 Feedback signal Terminal 12 (0 to 10Vdc / 0 to 100%, or 10 to 0Vdc / 0 to 100%) Terminal C1 (4 to 20mAdc / 0 to 100%, or 20 to 4mAdc / 0 to 100%) 	• Feedback signal selection is made by "H21".	H21
	Automatic deceleration	Torque limiter 1 (Braking) is set at "F41: 0". (Setting of Torque limiter 2 (Braking) is same.) In deceleration: The deceleration time is automatically extended up to 3 times for tripless operation even if a braking resistor is not used. In constant speed operation: Based on regenerative energy, the frequency is increased, and tripless operation is active.	When the deceleration time is extended to longer than three times the setting time, the inverter trips.	F41, E17
	Second motor's setting	This function is used for two motors switching operation. The second motor's V/f characteristics (base and maximum frequency), rated current, torque boost, electronic thermal relay, etc. can be preset. The second motor's circuit parameter can be preset, and torquevector control can be applied to both motors.	(M2/M1) <swm2></swm2>	A01 to A18
	Energy saving operation	This function minimizes inverter and motor losses at light load.		H10
	Fan stop operation	This function detects temperature inside inverter to stop cooling fans for silent operation and extending the fans' lifetime. On/off status of cooling fans is output.		H06
	Universal DI	Transmits to main controller of LINK operation	(U-DI)	
	Universal DO	Outputs command signal from main controller of LINK operation.	<u-do></u-do>	

NOTE: () or < > in the "Remarks" column indicates the abbreviation of terminal function assigned to digital input terminals X1 to X9 and transistor (relay) output terminals Y1 to Y4 (Y5A, Y5C).

	Item		Exp	lanation		Remarks	Func. code
Control	Zero speed cont	rol	The stopped motor holds its ro rotor angle is held after decele		motor, the	A motor with PG and option card (OPC-G11S-PG) are necessary. (ZERO) P11S series doesn't have this function.	
	Positioning cont	rol	The SY option card can be use differential counter method.	ed for positioning contro	l by	Option card (PG/SY) required	
	Synchronized opera	ation	This function controls the synchron	nized operation between 2 a	exes with PGs	Option card is required.	
Protection			Protects the inverter by electronic ther			opinion out a roquirour	
	Overvoltage		Detects DC link circuit overvolt			200V series : 400Vdc, 400V series : 800Vdc	
	Surge protection	1	Protects the inverter against su circuit power line and ground.			Line voltage: 5kV Between power line and ground: 7kV (1.2/50µs)	
	Undervoltage		Detects DC link circuit undervo	oltage, and stops the inv	erter.	200V series : 200Vdc, 400V series : 400Vdc • Operation details are selected by Function code F14.	
	Input phase loss	1	Phase loss protection for power	er line input	- Operation details are selected by 1 diretion code 1 14.	1117	
	Overheating		Protects the inverter by detection	on of inverter heat sink to	emperature.		
	Short-circuit		Short-circuit protection for inve	erter output circuit			
	Ground fault		Ground fault protection for invidetection method) Zero-phase current detection		hase current	22kW or smaller inverter 30kW or larger inverter	
	Motor overload		The inverter trips, and then p			Thermal time constant (0.5 to 75.0)	F10 to F12
	Motor overload		Electronic thermal overload remotor or inverter motor		minutes) can be preset for a special motor.	FIU (U FIZ	
			The second motor's electronic preset for 2-motor changeover.		External singnal is used for changeover.	A06 to A08	
	(Overload early wa	rning)	Before the inverter trips, outp signal at a preset level.	outs OL(Overload early v	Related transistor output : OL <ol1, ol2=""></ol1,>	E33 to E35	
C d N	DB resistor overheating		Prevents DB resistor overhead overload relay. (7.5kW or small P11S) Prevents DB resistor overhead relay attached to DB resistor. larger for P11S) Prevents DB resistor overhead relay attached to DB resistor.	aller for G11S, 11kW or	The inverter stops electricity discharge operation, to protect the DB resistor. Then, usually inverter displays "OU trip". Connects the relay output to the terminal THR, to protect the DB resistor. Then, usually the inverter displays "OH trip".	F13	
	Output phase loss detection		When the inverter executes au impedance imbalance (and sto	-	phase		
	Motor protection by PTC thermistor		When the motor temperature etrips automatically.	· · · · · · · · · · · · · · · · · · ·	, the inverter		H26, H27
	Auto reset		When the inverter is tripped, it resets automatically and restarts.			Number of Auto reset times and reset interval can be preset.	H04, H05
Condition (Installation and	Installation locat	ion	Indoor use only. Free from corrosive gases, flammable gases, oil mist, dusts, and direct sunlight.			Pollution degree 2 when complying with Low Voltage Directive is needed.	1
operation)	Ambient tempera	ature	-10 to +50°C (For inverters of 22kW or smaller, remove the ventilation covers when operated at temperature of 40°C or above.)				
	Ambient humidit	y	5 to 95%RH (non-condensing)				
	Altitude		1000m or less. Applicable to 3000m with power derating (-10% / 1000m)			* When altitude is 2000m or higher, interface circuit should be isolated from main power lines, to comply with Low Voltage Directive.	
	Vibration		3mm (vibration amplitude) at 2 to less than 9Hz 9.8m/s² at 9 to less than 20Hz 2m/s² at 20 to less than 55Hz (2m/s² at 9 to less than 55Hz : G11S				
			90kW, P11S 110kW or more) 1m/s ² at 55 to less than 200H:	z			
Storage co	ndition		• Temperature : -25 to +65°C • Humidity : 5 to 95%RH (No-c	condensing)			
			LED monitor			LCD monitor	
	Item		Explanation	Remarks	Func. code	Explanation	Func. code
Indication	Operation mode (Running)	by fun • Out	ollowing items can be displayed action setting. put frequency 1 (Before slip apensation) [Hz]		E43	Languages for the LCD monitor are selectable. English, German, French, Spanish, Italian, Japanese	E46
		com Set Out Out Mot Line Loa Tord	tput frequency 2 (After slip npensation) [Hz] ting frequency [Hz] ting frequency [Hz] typut current [A] typut voltage [V] tor synchronous speed [r/min] e speed [m/min] that shaft speed [r/min] que calculation value [%] tut power [kW] o reference value (remote)	displayed. (Even when main power is off, data is retained.) • PG feedback value is displayed when PG option is used.	F01 C30	Operation monitor & Alarm monitor Operation monitor Two types of monitoring is selectable by "E45". Displays operation guidance Bargraph Output frequency (before slip compensation) [%] Output current [A] Output torque [%] Alarm monitor When the inverter trips, displays the alarm	E45

			LCD monitor			
	Item	Explanation	Remarks	Func. code	Explanation	Func. code
ndication	Stopping Trip mode	Selected setting value or output value Displays the cause of trip by codes as follows. OC1 (Overcurrent during acceleration)	Trip history Cause of trip of the last 4 trips can be retained and displayed. (Even	E44	Function setting & monitor Selectable from the following 7 indications. • Function setting • Displays function codes and its data or data code. • Changes the data value. • Operation condition monitoring • Output frequency (before slip compensation) [Hz] • Output current [A]	
		OC1 (Overcurrent during	4 trips can be retained		[Hz]	

2. Common Specifications

2.1.2 FVR-E11S Series

	Item	Explanation
Output	Maximum frequency	50 to 400Hz *1)
requency	Base frequency	25 to 400Hz
	Base frequency Starting frequency Carrier frequency *2)	0.1 to 60.0Hz, Holding time: 0.0 to 10.0s
	Ourner inequently 2)	0.75 to 15kHz
	Accuracy (Stability)	• Analog setting: ±0.2% of Maximum frequency (at 25±10°C)
	<u> </u>	• Digital setting : ±0.01% of Maximum frequency (at -10 to +50°C)
	Setting resolution	• Analog setting : 1/3000 of Maximum frequency ex.) 0.02Hz at 60Hz, 0.04Hz at 120Hz, 0.15Hz at 400Hz
		• Digital setting : 0.01Hz at Maximum frequency of up to 99.99Hz (0.1Hz at Maximum frequency of 100.0Hz and above
		• LINK setting : • 1/20000 of Maximum frequency ex.) 0.003Hz at 60Hz, 0.006Hz at 120Hz, 0.02Hz at 400Hz
	1	• 0.01Hz (Fixed)
ontrol	Control method	V/f control (Sinusoidal PWM control) Dynamic torque-vector control (Sinusoidal PWM control)
	Voltage / freq. (V/f) characteristic	Adjustable at base and maximum frequency, with AVR control: 160 to 480V (400V series), 80 to 240V (200V series)
	Torque boost	Selectable by load characteristics: Constant torque load (Auto/manual), Variable torque load (Manual)
	Operation method	
	Operation method	name operation 1 to 10), to 10)
		Digital input signal operation: FWD or REV command, Coast-to-stop command, etc.
		• LINK operation : RS485 (Standard)
		Profibus-DP, Interbus-S, DeviceNet, Modbus Plus, CAN Open (Option)
	Frequency setting	KEYPAD operation:
	(Frequency command)	• External potentiometer (*) : 1 to 5kΩ
		Analog input : 0 to +10V DC (0 to +5V DC), 4 to 20mA DC
		(Reversible) 0 to ±10V DC (0 to ±5V DC)Reversible operation by polarized signal can be selected.
		(Inverse) +10 to 0V DC, 20 to 4mA DCInverse mode operation can be selected.
		• UP/DOWN control : Output frequency increases when UP signal is ON, and decreases when DOWN signal is ON.
		Multistep frequency : Up to 16 different frequencies can be selected by digital input signal.
		LINK operation : RS485 (Standard)
		Profibus-DP, Interbus-S, DeviceNet, Modbus Plus, CAN Open (Option)
	Running status signal	Transistor output (2 points): RUN, FAR, FDT, OL, LU, TL, etc.
		Relay output (1 point) : Alarm output (for any fault)
		Analog (or pulse) output (1 point) : Output frequency, Output current, Output torque, etc.
<u>t</u>	Acceleration / Deceleration	0.01 to 3600s : • Independently adjustable acceleration and deceleration • 2 different times are selectable.
	time	Mode select : Linear, S-curve (weak), S-curve (strong), Non-linear
	Frequency limiter	High and Low limiters can be preset.
	Bias frequency	Bias frequency can be preset.
	Gain for frequency setting	Gain for frequency setting can be preset. (0.0 to 200.0%) ex.) Analog input 0 to +5V DC with 200% gain results in
		maximum frequency at 5V DC.
	Jump frequency control	Jump frequency (3 points) and its common jump hysteresis width (0 to 30Hz) can be preset.
	Rotating motor pick up	A rotating motor (including inverse rotating mode) can be smoothly picked up without stopping the motor (speed search
	(Flying start)	method).
	Auto-restart after	Automatic restart is available without stopping motor after a momentary power failure (speed search method). When
	momentary power failure	"Smooth recovery" mode is selected, the motor speed drop is held minimum. (The inverter searches the motor speed,
		and smoothly returns to setting frequency. Even if the motor circuit is temporarily opened, the inverter operates without
		hitch.)
	Slip compensation	The inverter output frequency is controlled according to the load torque to keep motor speed constant. When the value
	1	set at "0.00" and "Torque-vector" is set at "active", the compensation value automatically selects the Fuji standard motor
		Slip compensation can be preset for the second motor.
	Droop operation	The motor speed droops in proportion to output torque (–9.9 to 0.0Hz).
	Torque limiter	When the motor torque reaches a preset limiting level, this function automatically adjusts the output frequency to prevent the inverter
		from tripping due to an overcurrent.
		Torque limiter 1 and 2 can be individually set, and are selectable with a digital input signal.
	PID control	This function can control flowrate, pressure, etc. (with an analog feedback signal.)
	l 12 control	• Reference signal • KEYPAD operation (or key) : 0.0 to 100.0%
		Voltage input (Terminal 12) : 0 to +10V DC
		Current input (Terminal C1) : 4 to 20mA DC
		 Multistep frequency setting : Setting freq. / Max. freq. X 100 (%)
		• RS485 : Setting freq. / Max. freq. X 100 (%)
		• Feedback signal • Terminal 12 (0 to +10V DC or +10 to 0V DC)
		• Terminal C1 (4 to 20mA DC or 20 to 4mA DC)
	Automatic deceleration	Torque limiter 1 (Braking) is set at "F41: 0" (Same as Torque limiter 2 (Braking)).
		• In deceleration: The deceleration time is automatically extended up to 3 times the setting time for tripless operation even if braking
		resistor not used.
		• In constant speed operation: Based on regenerative energy, the frequency is increased and tripless operation is active
	Second motor's setting	This function is used for two motors switching operation.
		The second motor's V/f characteristics (base and maximum frequency) can be preset.
		The second motor's circuit parameter can be preset. Torque-vector control can be applied to both motors.
	Energy saving operation	This function minimizes inverter and motor losses at light load.
	Fan stop operation	This function is used for silent operation or extending the fan's lifetime.

NOTES: (*) Option

*1) For application at 120Hz or above, please contact FUJI.

*2) Inverter may automatically reduce carrier frequency, in accordance with ambient temperature or output current for protecting inverter.

	Item		Explanation					
Indication	Operation mode (Running)	Output frequency (Hz)	Constant rate of feeding time					
(LED monitor)		Setting frequency (Hz)	• Line speed (m/min)					
		Output current (A)	PID reference value					
		Output voltage (V)	PID reference value (remote)					
Condition (Installation and operation)		 Motor synchronous speed (r/min) 	PID feedback value					
	Stopping	Selected setting value or output value						
	Trip mode	Displays the cause of trip by codes as follows.	dBH (Overheating at DB circuit)					
		OC1 (Overcurrent during acceleration)	OL1 (Motor 1 overload)					
		OC2 (Overcurrent during deceleration)	OL2 (Motor 2 overload)					
		OC3 (Overcurrent during running at constant speed)	OLU (Inverter unit overload)					
		Lin (Input phase loss)	• Er1 (Memory error)					
		OU1 (Overvoltage during acceleration)	 Er2 (KEYPAD panel communication error) 					
		OU2 (Overvoltage during deceleration)	• Er3 (CPU error)					
		OU3 (Overvoltage during running at constant speed)	• Er4 (Option error)					
		• LU (Undervoltage)	• Er5 (Option error)					
		OH1 (Overheating at heat sink)	 Er7 (Output phase loss error, impedance unbalance) 					
		OH2 (External thermal relay tripped)	• Er8 (RS485 error)					
	Running or trip mode	Trip history: Cause of trip by code (Even when main po	wer supply is off, trip history data of the last 4 trips are retained					
	Charge lamp	When the DC link circuit voltage is higher than 50V, the c	harge lamp is ON.					
Protection	Overload	Protects the inverter by electronic thermal and detection	of inverter temperature.					
	Overvoltage	Detects DC link circuit overvoltage, and stops the inverte	r. (400V series: 800V DC, 200V series: 400V DC)					
U	Incoming surge	Protects the inverter against surge voltage between the main circuit power line and the ground.						
	Undervoltage	Detects DC link circuit undervoltage, and stops the inverter. (400V series: 400V DC, 200V series: 200V DC)						
	Input phase loss	-	Phase loss protection for power line input.					
	Overheating	Protects the inverter by detection of inverter temperature.						
	Short-circuit	Short-circuit protection for inverter output circuit						
	Ground fault	Ground fault protection for inverter output circuit (Detecting at start)						
	Motor overload	• The inverter trips, and then protects the motor.						
		Electronic thermal overload relay can be selected for si	andard motor or inverter motor					
		• Thermal time constant (0.5 to 10.0 minutes) can be pr						
		• The second motor's electronic thermal overload relay of	·					
	DB resistor overheating	Prevents DB resistor overheating by internal electronic						
	22 rociotor evernouting	(The inverter stops electricity discharge operation to pr						
	Stall prevention		ent) trip when the output current exceeds the limit value during					
	Cian provention	acceleration.	only and whom the output outlone exceeded the limit value during					
			rque when the output current exceeds the limit value during					
		operation at constant speed.	rquo mon uno output oumont onoccue uno mini ratuo uumig					
		1 '	age) trip when the DC link circuit voltage exceeds the limit value					
		during deceleration.	., .,					
	Output phase loss	When the inverter executes tuning, detects each phase	mpedance unbalance.					
	Motor protection by	When the motor temperature exceeds allowable value, the	•					
	PTC thermistor	,						
	Auto reset	When the inverter is tripped, it resets automatically and	restarts.					
Condition	Installation location	Free from corrosive gases, flammable gases, oil mist, du						
	Altitude	1000m or less. Applicable to 3000m with power derating	· · · · · · · · · · · · · · · · · · ·					
and	Ambient temperature	−10 to +50 °C						
	Ambient temperature Ambient humidity	5 to 95%RH (non-condensing)						
.,,	Vibration	3mm at from 2 to less than 9Hz, 9.8m/s² at from 9 to les	s than 20Hz					
	1.5.4001	2m/s ² at from 20 to less than 55Hz, 1m/s ² at from 55 to l						
Storage condit	lion	·						
Storage Condi	uon	• Temperature : -25 to +65 °C • Humidity : 5 to 95%F	nri (non-condensing)					

2. Common Specifications

2.2 Protective functions

2.2.1 FRENIC5000G11S/P11S Series

Function	Description		LED monitor	Alarm output (30Ry) *)	Func. cod
Overcurrent protection	Stops running to protect inverter from an overcurrent resulting from	During acceleration	0E I		
(Short-circuit) (Ground fault)	 Stops running to protect inverter from an overcurrent due to a short-circuit in the output circuit. 	During deceleration	002		
	Stops running to protect inverter from an overcurrent due to a ground fault in the output circuit.	While running at constant speed	OC 3		
	Stops running to protect inverter from an overcurrent resulting from ground fault in the output circuit by detecting zero-phase current. (30kW or larger model only)	Groung fault	EF		
Overvoltage protection	The inverter stops when it detects an overvoltage in the DC link circuit.	During acceleration	ו עם		
	(200V series : 400Vdc or more, 400V series : 800Vdc or more) • Protection is not assured if excess AC line voltage is applied inadvert-	During deceleration	DU2		
	ently.	While running at constant speed	0U3	O	
Incoming surge protection	 Protects the inverter against surge voltage between the main circuit power Protects the inverter against surge voltage in the main circuit power line. The inverter may be tripped by some other protective function. 	line and ground.			
Undervoltage protection	 Stops the inverter when the DC link circuit voltage drops below undervoltage level. (200V series : 200V DC or less, 400V series : 400V DC or less) Alarm signal is not output even if the DC link circuit voltage drops, when "F 	14 : 3 to 5" is selected.	LU	Δ	F14
Input phase loss protection	The inverter is protected from being damaged when open-phase fault occur	rs.	Lin	0	
Overheat protection	 Stops the inverter when it detects excess heat sink temperature in case of overload. 	cooling fan failure or	OH I	0	
	 Stops the inverter when it detects an abnormal rise in temperature in the in insufficient ventilation in cubicles or an abnormal ambient temperature. Stops the inverter when it detects an abnormal rise in temperature inside the 	·	0H3	0	
	 When the built-in or external braking resistor overheats, the inverter stops of Function data appropriate for the resistor type (built-in/external) must be set. (G 	5 5	46H	0	F13
Electronic thermal	This function stops the inverter by detecting an inverter overload.		OLU	0	
overload relay (Motor protection)	 This function stops the inverter by detecting an overload in a standard motor or inverter motor. 	Motor 1 overload	<u> </u>	0	F10 to F
		Motor 2 overload	<u> </u>	0	A06 to A
Fuse blown	When a blown fuse is detected, the inverter stops running. (30kW or larger model only)	1	FUS	0	E40 E44
Stall prevention (Momentary overcurrent limitation)	 When an output current exceeds the limit during acceleration, this function to prevent the occurrence of an OC1 trip. The stall prevention function can be disabled. 	lowers output frequency	_	_	F40, F41 E16, E17 H12
Active drive	 During running in which acceleration is 60s or longer, this function increase prevent the occurrence of an OLU trip. The acceleration time can be prolonged up to three times the preset time. 	es the acceleration time to			
External alarm input	The inverter stops on receiving external alarm signals. Use THR terminal function (digital input).		0H2	0	
Overspeed protection	Stops the inverter when the output frequency exceeds the rated maximum	frequency by 20%.	85	0	
PG error	If disconnection occurs in pulse generator circuits, the inverter issues an alarm.		PG	Ö	
Alarm output (for any fault)	The inverter outputs a relay contact signal when the inverter issued an alarm and stopped.	Output terminals: 30A, 30B, and 30C	_		F36
Alarm reset command	 An alarm-stop state of the inverter can be cleared with the RESET key or by a digital input signal (RST). 	Use the RST terminal function for signal input.			
Alarm history memory	Store up to four instances of previous alarm data.	Even if main power input is turned off, alarm			
Storage of data on cause of trip	The inverter can store and display details of the latest alarm history data.	history and trip-cause data are retained.			
Memory error	 The inverter checks memory data after power-on and when the data is writ detected, the inverter stops. 	ten. If a memory error is	Er I	0	
KEYPAD panel communication error	 If an error is detected in communication between the inverter and KEYPAD is being used, the inverter stops. When operated by external signals, the inverter continues running. The ala not output. Only Er2 is displayed. 		Er2	Δ	F02
CPU error	• If the inverter detects a CPU error caused by noise or some other factor, the	e inverter stops.	Er3	0	
Option communication error	If a checksum error or disconnection is detected during communication, the	e inverter issues an alarm.	Er4	0	
Option error	• If a linkage error or other option error is detected, the inverter issues an alarm.		Er5	0	
Operation procedure error	Er6 is indicated only when the inverter is forcedly stopped by [STOP1] or [STE09 (Set value: 30 or 31)	FOP2] operation in E01 to	Er8	0	
	If an unbalance of output circuits is detected during auto-tuning, this function	issues an alarm (and	Er7	0	
Output phase loss error	stops the inverter).		L' '		

^{*)} \triangle : By function code setting, alarm output can be disabled.

NOTES:

¹⁾ Retaining alarm signal when auxiliary controll power supply is not used:

If the inverter power supply is cut off while an internal alarm signal is being output, the alarm signal cannot be retained.

2) To issue the RESET command, press the RESET key on the KEYPAD panel or connect terminals RST and CM and disconnect them afterwards.

3) Fault history data is stored for the past four trips.

2.2.2 FVR-E11S Series

Function	Description							
Overcurrent protection (Short-circuit)	Stops running to protect inverter from an overcurrent resulting from overload. Stops running to protect inverter from an overcurrent due to a short-circuit in the	During accelera	ation	0C I				
(Ground fault)	output circuit. Stops running to protect inverter from an overcurrent due to a ground fault in the	During decelera		002				
	output circuit.	While ru constant	nning at t speed	0E 3				
Overvoltage protection	The inverter stops when it detects an overvoltage in the DC link circuit.	400V series : 800V DC or more During 200V series : 400V DC or more accelerate.	ation	0U I				
		Protection is not assured if During deceleration	ation	0U2				
			nning at	0U3				
Incoming surge	Protects the inverter against surge voltage between the main circuit power line	• The inverter may be tripped by some						
protection	and ground. • Protects the inverter against surge voltage in the main circuit power line.	protective function.						
Undervoltage	Stops the inverter when the DC link circuit voltage drops below undervoltage level.	• 400V series : 400V DC or less		LU				
protection		200V series : 200V DC or less						
Input phase loss protection	The inverter is protected from being damaged when open-phase fault occurs.			Lin				
Overheat protection	Stops the inverter when it detects excess heat sink temperature in case of cooling fan failure or overload.			OH I				
	 When the external braking resistor overheats, the inverter stops discharging and running. 			аьн				
Electronic thermal	This function stops the inverter by detecting an inverter overload.			OLU				
overload relay	This function stops the inverter by detecting an overload in a standard motor or	Motor 1	overload	OL I				
(Motor protection)	inverter motor.	Motor 2	overload	DL 2				
Stall prevention	When an output current exceeds the limit during acceleration, this function lowers	The stall prevention function can be of	disabled.					
(Momentary overcurrent limitation)	output frequency to prevent the occurrence of an OC1 trip.							
External alarm input	The inverter stops on receiving external alarm signals.	Use THR terminal function (digital input)	out).	0H2				
Alarm output	The inverter outputs a relay contact signal when the inverter issued an alarm and	Output terminals: 30A, 30B, and 30C	;					
(for any fault)	stopped.	• Use the RST terminal function for sig	ınal input.					
Alarm reset command	An alarm-stop state of the inverter can be cleared with the RESET key or by a digital input signal (RST).	Even if main power input is turned of history and trip-cause data are retain						
Alarm history memory	Stores up to four instances of previous alarm data.							
Storage of data on cause of trip	The inverter can store and display details of the latest alarm history data.							
Memory error	 The inverter checks memory data after power-on and when the data is written. If a memory error is detected, the inverter stops. 			Er I				
KEYPAD panel	If an error is detected in communication between the inverter and KEYPAD when	When operated by external signals, the	e inverter					
communication error	the Keypad panel is being used, the inverter stops.	continues running. The alarm output (for fault) is not output. Only Er2 is display	, ,	ErZ				
CPU error	If the inverter detects a CPU error caused by noise or some other factor, the inverter stops.			Er3				
Option communication error	If a checksum error or disconnection is detected during communication, the inverter issues an alarm.			Er4				
Option error	If a linkage error or other option error is detected, the inverter issues an alarm.			Er5				
Output phase loss error	If an unbalance of output circuits is detected during tuning, this function issues an alarm (and stops the inverter).			Er7				
RS485 communication error	If an RS485 communication error is detected, the inverter issues an alarm.			Er8				

¹⁾Retaining alarm signal when auxiliary controll power supply is not used:

If the inverter power supply is cut off while an internal alarm signal is being output, the alarm signal cannot be retained.

2)To issue the RESET command, press the experimental experiment

2. Common Specifications

2.3 Function settings2.3.1 FRENIC5000G11S/P11S Series

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

(Fundamental Functions)

Foundation	Functi	on			Catting yours				Min.	Factory	setting	Bemarks	
1 Collap protections	Code	Name	LCD	monitor	1	Setting	range	Unit	unit	—22kW	30kW—	Hemarks	
1 1 1 1 1 1 1 1 1 1	F00	Data protection	F00	DATA PRTC)	-	-	()	Setting can be made so that a set value cannot be easily changed by KEYPAD panel operation.	
1 External signal input (digital input) Command input method. Command	F01	Frequency command 1	F01	FREQ CMD 1	1 : 2 : 3 : 4 : 5 : 6 : 7 : 8 : 9 : 10 : :	Voltage input (terminal 1 Current input (termi Voltage and current in Reversible operatio (terminal 12) (0 to ± Reversible operatio (terminal 12, V1 and Inverse mode opera (+10 to 0Vdc) Inverse mode opera (20 to 4mAdc) UP/DOWN control UP/DOWN control 2 PATTERN operation	2 and V2) (0 to 10Vdc, 0 to 5Vdc) nal C1) (4 to 20mAdc) put (terminals 12 and C1) n with polarity 10Vdc) n with polarity 1V2) (0 to ± 10Vdc) tition (terminal 12 and V2) tition (terminal C1) (initial freq. = 0Hz) (initial freq. = last value)	-	-	(Selects the frequency setting method. 1 : To use an external potentiometer, use terminal 12 and set "F01:1". 5 : Terminal V1 is optional. 6, 7: Set the external (digital input) signal "E01 to E09" at "21: Inverse mode changeover". 8, 9: Set the external (digital input) signal "E01 to E09" at "17: UP command" and "18:	
P115 30 to 120Hz	F02	Operation method	F02	OPR METHOD	1 :	External signal inpu	t (digital input)	-		()		
P115 25 to 120Hz		Maximum frequency 1	F03		P11S	: 50 to 120Hz			1	(EN	50)	frequency for motor 1.	
Supply voltage is set. Sto 240V xAVR active (200V class) 330 (EHX VI) 400 (Voltass) 320 (a 480V xAVR active (200V class) 220 (EHX VI) 220 (EHX VI) 220 (EHX VI) 220 (EHX VII) 220 (EHX VII) 220 (EHX VIII) 220 (Base frequency 1	F04	BASE Hz-1				Hz	1				
Canaly Class Cana	F05	Ĭ	F05	RATED V-1	80 to 24	supply voltage is se 40V : AVR active (t. 200V class)	V	1	(200\ 380 (E	/ class) N: 400)	Sets the output voltage at the Base frequency 1 "F04".	
Deceleration time 1	F06		F06	MAX V-1				V	1	(200V 380 (E	/ class) N: 400)		
Torque boost 1	F07	Acceleration time 1	F07	ACC TIME1	0.01 to	3600s		s	0.01	6.00	20.00	During deceleration, Coast-	
10.1 to 0.9 :Manual (for proportional torque load)	F08	Deceleration time 1	F08	DEC TIME1	0.01 to	3600s		s	0.01	6.00	20.00		
thermal overload relay 2	F09	Torque boost 1	F09	TRQ BOOST1	1.0 to	0.9 : Manual (for v 1.9 : Manual (for p	ariable torque load) proportional torque load)	-	0.1				
Table Thermal time constant F12 TIME CNST1 0.5 to 75.0 min min 0.1 5.0 10.0 Setting for motor 2 can also be made by "A07".	F10	thermal	F10	ELCTRN OL1	1 :	Active (for 4-pole st		-	,		1		
F13 Electronic thermal overload relay (for braking resistor) F13 DBR OL Electronic thermal overload relay (for braking resistor) F14 Restart mode (Select) after momentary power failure F15 Frequency F16 Inactive (Momentarily stops and restarts at output frequency) F16 Inactive (Momentarily stops and restarts at starting frequency) F16 Limiter Elimiter	F11	for motor 1 (Level)	F11	OL LEVEL1			d current of the inverter	Α	0.01	*-	1)	Level setting for motor 2 can also be made by "A07".	
1	F12	(Thermal time constant)	F12	TIME CNST1	0.5 to 7			min	0.1	5.0	10.0	Setting for motor 2 can also be made by "A08".	
D : Inactive	F13	overload relay	F13	DBR OL		0 : Inactive 1 : Active (for built- 2 : Active (for exter		-	•		1		
D : Inactive 2 : Active (for external braking resistor) 15kW or larger.						[11kW or larger] 0 : Inactive		-	-	()		
F14 Restart mode (Select) after momentary power failure F14 Restart mode (Select) after momentary power failure F15 Frequency (High limiter (Low) F16 Imiter (Low) F17 Gain (for frequency setting signal) F18 Bias frequency F18 FREQ BIAS F19 DC BRK Hz F10 DC BRK Hz F10 DC BRK LVL G11S : 0 to 100% F11 RESTART O : Inactive (Trip, and alarm when power failure occurs.) 1 : Inactive (Trip, and alarm when power recovers.) 2 : Inactive (Trip, and alarm when power recovers.) 2 : Inactive (Trip, and alarm when power failure occurs.) 1 : Inactive (Trip, and alarm when power failure occurs.) 1 : Inactive (Trip, and alarm when power failure occurs.) 2 : Inactive (Trip, and alarm when power failure occurs.) 5 : Active (Momentarily stops and restarts at output frequency of before power failure) 5 : Active (Momentarily stops and restarts at output frequency) 5 : Active (Momentarily stops and restarts at output frequency) 5 : Active (Momentarily stops and restarts at output frequency) F15 H LIMITER G11S: 0 to 400Hz P11S: 0 to 120Hz Hz 1 0 F16 L LIMITER G11S: 0 to 400Hz P11S: 0 to 120Hz Hz 1 0 F17 FREQ GAIN F18 FREQ BIAS G11S: -400.0 to 400.0Hz P11S: -120.0 to 120.0Hz Hz 0.1 0.0 Minus bias setting is possible. F20 DC brake(Starting freq.) F21 DC BRK LVL G11S: 0 to 100% P11S: 0 to 80% % 1 0					P11S	0 : Inactive 2 : Active (for exter	nal braking resistor)	-	-	()		
after momentary power failure 1 : Inactive (Trip, and alarm when power recovers.) 2 : Inactive (Deceleration stop, and alarm) 3 : Active (Somethie recovery by continuous operation mode) 4 : Active (Momentarily stops and restarts at output frequency of before power failure) 5 : Active (Momentarily stops and restarts at starting frequency) 5 : Active (Momentarily stops and restarts at starting frequency) 6 : Active (Momentarily stops and restarts at starting frequency) 1 : Active (Momentarily stops and restarts at starting frequency) 5 : Active (Momentarily stops and restarts at starting frequency) 5 : Active (Momentarily stops and restarts at starting frequency) 5 : Active (Momentarily stops and restarts at starting frequency) 5 : Active (Momentarily stops and restarts at starting frequency) 5 : Active (Momentarily stops and restarts at starting frequency) 5 : Active (Momentarily stops and restarts at storting frequency) 5 : Active (Momentarily stops and restarts at output frequency at a starting frequency) 5 : Active (Momentarily stops and restarts at output frequency) 7 : Active (Momentarily stops and restarts at output frequency) 7 : Active (Momentarily stops and restarts at output frequency) 7 : Active (Momentarily stops and restarts at output frequency) 7 : Active (Momentarily stops and restarts at output frequency) 8 : Active (Momentarily stops and restarts at output frequency) 8 : Active (Momentarily stops and restarts at output frequency) 8 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency) 9 : Active (Momentarily stops and restarts at output frequency)								-	•	()		
F16	F14	after momentary	F14	RESTART	1 : Ir 2 : Ir 3 : A 4 : A fr 5 : A	nactive (Trip, and ala nactive (Deceleration ctive (Smooth recovery ctive (Momentarily sequency of before p ctive (Momentarily sequency)	rm when power recovers.) n stop, and alarm) by continuous operation mode) stops and restarts at output ower failure) stops and restarts at	-	-			procedure, see "H13" to	
F17 Gain (for frequency setting signal) F18 Bias frequency F18 FREQ BIAS G11S: -400.0 to 400.0Hz P11S:-120.0 to 120.0Hz Hz 0.1 0.0 Minus bias setting is possible. F20 DC brake(Starting freq.) F21 (Braking level) F21 DC BRK LVL G11S: 0 to 100% P11S: 0 to 80% % 1 0	F15	, , , , , , ,											
F18 Bias frequency F18 FREQ BIAS G11S: -400.0 to 400.0Hz P11S: -120.0 to 120.0Hz Hz 0.1 0.0 Minus bias setting is possible. F20 DC brake(Starting freq.) F20 DC BRK Hz 0.0 to 60.0Hz Hz 0.1 0.0 F21 (Braking level) F21 DC BRK LVL G11S: 0 to 100% P11S: 0 to 80% % 1 0		Gain (for frequency					P11S: 0 to 120Hz				-		
F20 DC brake(Starting freq.) F20 DC BRK Hz 0.0 to 60.0Hz Hz 0.1 0.0 F21 (Braking level) DC BRK LVL G11S:0 to 100% P11S:0 to 80% % 1 0	F19		F19	EREO RIAS	G110	-400 0 to 400 0U-	P115 : -120 0 to 120 0U-	μъ	0.1		0	Minus hias catting is possible	
F21 (Braking level) F21 DC BRK LVL G11S : 0 to 100% P11S : 0 to 80% % 1 0			!!				1 110120.0 to 120.0HZ					wintus bias setting is possible.	
							P11S:0 to 80%						
									0.1				

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Functi	on			Setting range				I I m i A	Min.	Factory	setting	Domonico
Code	Name	LCD	monitor		Setting ra	ange		Unit	unit	—22kW	30kW—	Remarks
F23	Starting frequency (Freq.)	F23	START Hz	0.1 to 60.0Hz				Hz	0.1	0.	.5	
F24	(Holding time)	F24	HOLDING t	0.0 to 10.0s				s	0.1	0.	.0	
F25	Stop frequency	F25	STOP Hz	0.1 to 6.0Hz				Hz	0.1	0.	.2	Sets the frequency at stopping.
F26	Motor sound (Carrier freq.)	F26	MTR SOUND	G11S, CT use (EN) P11S, VT use*(EN)	0.75-15kH -55kW -22kW	z 0.75-10kHz 75kW- 30-75kW	0.75-6kHz - 90kW-	kHz	1	10	: 2 5(-55kW)* 0(75kW-)* 0 (30kW)	* In case of VT use, carrier frequency should be adjusted depending on capacity
F27	(Sound tone)	F27	MTR TONE	0 : Level 0 1 : Level 1 2 : Level 2 3 : Level 3				-	·	()	Four types of tone can be selected. This setting is effective when the carrier frequency "F26" is set at 7kHz or lower. This selection can be made at 7kHz or higher, but the tone does not change.
F30	FMA (Voltage adjust)	F30	FMA V-ADJ	0 to 200%				%	1	10	00	
F31	(Function)	F31	FMA FUNC	1 : Output freque 2 : Output currer 3 : Output voltag 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback 8 : PG feedback	1 : Output frequency 2 (After slip compensation) 2 : Output current 3 : Output voltage 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback value 8 : PG feedback value 9 : DC link circuit voltage)	About 0 and 1 1-Output frequency 2 0-Output frequency 1 Sotting value KEYPAD panel Sip compensation Inverter
F33	FMP (Pulse rate)	F33	FMP PULSES	300 to 6000 p/s (at	t full scale)			p/s	1		40	
F34	(Voltage adjust)	F34	FMP V-ADJ	0% : Pulse 1 to 200% : Voltage		(50% duty) 670 p/s (duty	y adjust)	%	1	()	Percent indication based on inverter rated voltage
F35	(Function)	F35	FMP FUNC	0 : Output freque 1 : Output freque 2 : Output currer 3 : Output voltag 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback 8 : PG feedback 9 : DC link circui 10 : Universal AO	ency 2 (After the e e value value			-	-	()	About 0 and 1 1.0utput frequency 2 0.0utput frequency 1 Sating value KEYPAD Silip compensation amount inverter
F36	30RY operation mode	F36	30RY MODE	0 : The relay(30) 1 : The relay(30)			le	-	-	()	
F40	Torque limiter 1 (Driving)	F40	DRV TRQ 1	G11S: 20 to 200, P11S: 20 to 150,			*2)	%	1	99 180	99 150	JE EN
F41	(Braking)	F41	BRK TRQ 1	G11S: 0 (Automa 20 to 200, P11S: 0 (Automa 20 to 150,	999% (999 tic decelera	etion control)	*2)	%	1	150	100	JE EN
F42	Torque vector control 1	F42	TRQVECTOR1	0 : Inactive 1 : Active				-	-	()	

Extension Terminal Functions

Functi	on		Cotting rouge		Unit	Min.	Factory setting	Remarks
Code	Name	LCD monitor	Setting range		OIIII	unit	—22kW 30kW—	nemarks
E01	X1 terminal function	E01 X1 FUNC	Selects from the following items.		-	-	0	
E02	X2 terminal function	E02 X2 FUNC			-	-	1	
E03	X3 terminal function	E03 X3 FUNC			-	-	2	
E04	X4 terminal function	E04 X4 FUNC			-	-	3	
E05	X5 terminal function	E05 X5 FUNC			-	1	4	
E06	X6 terminal function	E06 X6 FUNC			-	-	5	
E07	X7 terminal function	E07 X7 FUNC			-	-	6	
E08	X8 terminal function	E08 X8 FUNC			-	-	7	
E09	X9 terminal function	E09 X9 FUNC			-	-	8	
			0 : 1 : Multistep freq. select (1 to 4bit) 2 : (16 steps) 3 : 4 :) 4 steps of ACC/DEC time 5 :) selectioin (1 to 2bit) 6 : 3-wire operation stop command 7 : Coast-to-stop command 8 : Alarm reset 9 : Trip command (External fault) 10 : Jogging operation 11 : Freq. set. 2 / Freq. set. 1 12 : Motor 2 / Motor 1	[SS1] [SS2] [SS4] [SS8] [RT1] [HLD] [BX] [RST] [THR] [JOG] [Hz2/Hz1] [M2/M1]				12: Switches motor parameters to motor 2 when this signal is on.

2. Common Specifications

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Function	on			0.411	1114	Min.	Factory s	etting	Barranta
Code	Name	LCD	monitor	Setting range	Unit	unit	—22kW 3	0kW—	Remarks
				13 : DC brake command [DCBRK] 14 : Torque limiter 2 / Torque limiter 1 TL2/TL1] 15 : Switching operation between line and inverter (50Hz) [SW50] 16 : Switching operation between line and inverter (60Hz) [SW60] 17 : UP command [UP] 18 : DOWN command [DOWN] 19 : Write enable for KEYPAD [WE-KP] 20 : PID control cancel [Hz/PID] 21 : Inverse mode changeover (terminals 12 and C1 [IVS] 22 : Interlock signal for 52-2 [IL] 23 : TRQ control cancel [Hz/FID] 24 : Link enable (Bus, RS485) [LE] 25 : Universal DI [U-DI] 26 : Pick up start mode [STM] 27 : SYPG enable [PG/Hz] 28 : Synchronization command [SYC] 29 : Zero speed command [STOP1] 30 : Forced stop command with Deceleration time 4					15, 16: When 15 or 16 is turned on, the operation smoothly changes to commercial power operation at 50 or 60Hz, without stopping the motor. From 50Hz power line: (SW50) From 60Hz power line: (SW60) 17, 18: "F01" must be set at "8: UP/DOWN control 1" or "9: UP/DOWN control 2". 20: When this signal is on, PID control is canceled and KEYPAD operation is effective. 23: When this signal is on, torque control is canceled. 27: PG/Hz is option. 28: SY is option.
				[STOP2] 32 : Pre-exciting command [EXITE]					32 : EXITE is option.
E10	Acceleration time 2	E10	ACC TIME2	0.01 to 3600s	S	0.01	6.00	20.00	10.00 100.00)
E11	Deceleration time 2	E11	DEC TIME2		S	0.01	6.00	20.00	10.00 100.00
E12	Acceleration time 3	E12	ACC TIME3		S	0.01	6.00	20.00	JE 15.00 100.00 ≻EN
E13	Deceleration time 3	E13	DEC TIME3		S	0.01		20.00	15.00 100.00
E14	Acceleration time 4	E14	ACC TIME4		S	0.01		20.00	3.00 100.00 F07
E15	Deceleration time 4	E15 E16	DEC TIME4 DRV TRQ 2	G11S: 20 to 200%, 999% (999: No limit) *2)	s %	0.01	6.00	20.00	JE 3.00 100.00 JF08
E17	Torque limiter 2 (Driving) (Braking)	E17	BRK TRQ 2	G11S: 20 to 200%, 999% (999: No limit) *2) P11S: 20 to 150%, 999% (999: No limit) G11S: 0 (Automatic deceleration control),	%	1	180	150	EN JE
	(2.00.19)		J	20 to 200%, 999% (999: No limit) *2) P11S: 0 (Automatic deceleration control), 20 to 150%, 999% (999: No limit)	,,	·	150	100	EN F40, F41
E20	Y1 terminal function	E20	Y1 FUNC	Selects from the following items.	-	-	0		
E21	Y2 terminal function	E21	Y2 FUNC		-	-	1		
E22	Y3 terminal function	E22	Y3 FUNC	-	-	-	7		
E23 E24	Y4 terminal function Y5A,Y5C terminal function	E23 E24	Y4 FUNC Y5 FUNC		-	-	15 (10	0)	(EN)
				0 : Inverter running [RUN] 1 : Frequency equivalence signal [FAR] 2 : Frequency level detection [FDT1] 3 : Undervoltage detection signal [LU] 4 : Torque polarity [B/D] 5 : Torque limiting [ILF] 6 : Auto-restarting [IPF] 7 : Overload early warning [OL1] 8 : KEYPAD operation mode [KP] 9 : Inverter stopping [STP] 10 : Ready output [RDY] 11 : Line/Inv changeover (for 88) [SW88] 12 : Line/Inv changeover (for 52-2) [SW52-2] 13 : Line/Inv changeover (for 52-2) [SW52-2] 13 : Line/Inv changeover (for 52-1) [SW52-1] (11 to 13: For Line/Inverter changeover operation 1 in the store of the store		-			29 : SY is option.
				34 : Speed existence signal [DNZS]					

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Functi	on					Min.	Factory setting	
Code	Name	LCD m	onitor	Setting range	Unit	unit	—22kW 30kW—	Remarks
E30	FAR function (Hysteresis) signal	E30 F	FAR HYSTR	0.0 to 10.0 Hz	Hz	0.1	2.5	E20 to E24: 1
E31	FDT1 function (Level)		FDT1 LEVEL	G11S:0 to 400 Hz P11S:0 to 120 Hz	Hz	1	60 (50)	(): EN E20 to E24: 2
E32	0 ()	E32 F	FDT HYSTR	0.0 to 30.0 Hz	Hz	0.1	1.0	
E33	OL1 function(Mode select) signal	E33 (OL1 WARNING	0 : Thermal calculation 1 : Output current	-	-	0	E20 to E24: 7
E34	(Level)	E34 (OL1 LEVEL	G11S: Approx. 5 to 200% of rated current P11S: Approx. 5 to 150% of rated current	Α	0.01	*1)	
E35	(Timer)	E35 (OLTIMER	0.0 to 60.0s	S	0.1	10.0	
E36	FDT2 function (Level)	E36 F	FDT2 LEVEL	G11S: 0 to 400Hz P11S: 0 to 120Hz	Hz	1	60 (50)	(): EN
E37	OL2 function (Level)	E37 (OL2 LEVEL	G11S: Approx. 5 to 200% of rated current P11S: Approx. 5 to 150% of rated current	А	0.01	*1)	
E40	Display coefficient A	E40 (COEF A	-999.00 to 999.00	-	0.01	0.01	
E41	Display coefficient B	E41 (COEF B	-999.00 to 999.00	-	0.01	0.00	
E42	LED Display filter	E42 [DISPLAY FL	0.0 to 5.0s	S	0.1	0.5	
E43			LED MNTR	0 : Output frequency 1 (Before slip compensation) 1 : Output frequency 2 (After slip compensation) 2 : Setting frequency [Hz] 3 : Output current [A] 4 : Output voltage [V] 5 : Motor synchronous speed [r/min] 6 : Line speed [m/min] 7 : Load shaft speed [r/min] 8 : Torque calculation value [%] 9 : Input power [kW] 10 : PID reference value [Trimin] 11 : PID reference value (remote) 12 : PID feedback value			0	About 0 and 1 1:Output frequency 2 0:Output frequency 2 0:Setting Walter Setting Setting
E44	(Display at STOP mode)		LED MNTR2	0 : Setting value 1 : Output value	-	•	0	Selects items displayed on the LED monitor when inverter is stopping.
E45	LCD Monitor (Function)	E45 L	LCD MNTR	Displays operation guidance Bar graph (Output freq., Output current, and Output torque)	-	•	0	Indicates based on inverter rated current.
E46	(Language)		LANGUAGE	0 :Japanese 1 :English 2 :German 3 :French 4 :Spanish 5 :Italian	-	-	1	
E47	(Contrast)	E47	CONTRAST	0 (Soft) to 10 (Hard)	-	-	5	

Control Functions of Frequency

Functi	on			Catting		Unit	Min.	Factory	setting	Remarks
Code	Name	LCD	monitor	Setting	g range	Unit	unit	—22kW	30kW—	Hemarks
C01	Jump (Jump freq. 1)	C01	JUMP Hz 1	G11S: 0 to 400Hz	P11S:0 to 120Hz	Hz	1	()	
C02	frequency(Jump freq. 2)	C02	JUMP Hz 2			Hz	1	()	
C03	(Jump freq. 3)	C03	JUMP Hz 3			Hz	1	()	
C04	(Hysteresis)	C04	JUMP HYSTR	0 to 30Hz		Hz	1	3	3	
C05	Multistep (Freq. 1)	C05	MULTI Hz-1	G11S: 0.00 to 400.00Hz	P11S: 0.00 to 120.00Hz	Hz	0.01	0.0	00	
C06	frequency (Freq. 2)	C06	MULTI Hz-2			Hz	0.01	0.0	00	
C07	setting (Freq. 3)	C07	MULTI Hz-3			Hz	0.01	0.0	00	
C08	(Freq. 4)	C08	MULTI Hz-4			Hz	0.01	0.0	00	
C09	(Freq. 5)	C09	MULTI Hz-5			Hz	0.01	0.0	00	
C10	(Freq. 6)	C10	MULTI Hz-6			Hz	0.01	0.0	00	
C11	(Freq. 7)	C11	MULTI Hz-7			Hz	0.01	0.0	00	
C12	(Freq. 8)	C12	MULTI Hz-8			Hz	0.01	0.0	00	
C13	(Freq. 9)	C13	MULTI Hz-9			Hz	0.01	0.0	00	
C14	(Freq.10)	C14	MULTI Hz10			Hz	0.01	0.0	00	
C15	(Freq.11)	C15	MULTI Hz11			Hz	0.01	0.0	00	
C16	(Freq.12)	C16	MULTI Hz12			Hz	0.01	0.0	00	
C17	(Freq.13)	C17	MULTI Hz13			Hz	0.01	0.0	00	
C18	(Freq.14)	C18	MULTI Hz14			Hz	0.01	0.0	00	
C19	(Freq.15)	C19	MULTI Hz15			Hz	0.01	0.0	00	
C20	JOG frequency	C20	JOG Hz	G11S: 0.00 to 400.00Hz	P11S: 0.00 to 120.00Hz	Hz	0.01	5.0	00	
C21	PATTERN operation (Mode select)	C21	PATTERN	0 : Active (Mono-cycle o 1 : Active (Continuous cycle operation command i 2 : Active (Mono-cycle ocontinues at the lates	s effective.) peration, and after	-	-	()	

2. Common Specifications

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Functi	on				C-W:		Unit	Min.	Factory setting	Remarks
Code	Name	LCD	monitor		Setti	ng range	Unit	unit	—22kW 30kW—	nemarks
C22	(Stage 1)	C22	STAGE 1	 Operation 	time: 0.00 to	6000s	S	0.01	0.00 F1	
C23	(Stage 2)	C23	STAGE 2	• F1 to F4	and R1 to R4	1	s	0.01	0.00 F1	
C24	(Stage 3)	C24	STAGE 3	Code	FWD/REV	ACC/DEC	s	0.01	0.00 F1	
C25	(Stage 4)	C25	STAGE 4	F1:	FWD	ACC1 / DEC1	s	0.01	0.00 F1	
C26	(Stage 5)	C26	STAGE 5	F2:	FWD	ACC2 / DEC2	s	0.01	0.00 F1	
C27	(Stage 6)	C27	STAGE 6	F3:	FWD	ACC3 / DEC3	s	0.01	0.00 F1	
C28	(Stage 7)	C28	STAGE 7	F4:	FWD	ACC4 / DEC4	s	0.01	0.00 F1	
	* Setting for			R1:	REV	ACC1 / DEC1				
	operation time,			R2:	REV	ACC2 / DEC2				
	FWD/REV rotation and			R3:	REV	ACC3 / DEC3				
	ACC/DEC time select.			R4:	REV	ACC4 / DEC4				
C30	Frequency command 2	C30	FREQ CMD 2	1 : Voltag 2 : Curre 3 : Voltag 4 : Revei	e input (termin int input (termin input (terminge and curren rsible operation in all 12 and long in mode operation in all 12 and long in mode operation own control		-		2	F01, H30 F17,18 E01-09:11,20,23 Data 2, 3, and 7 are always inactive H08 in EN version. E01-E09:21 E01-E09:21 E01-E09:17 E01-E09:18 C21-C28
C31	Offset (Terminal 12)	C31	OFFSET 12	-5.0 to +5.0)%		%	0.1	0.0	JE
	Bias (Terminal 12)	C31	BIAS 12	-100.0 to +	-100.0%		%	0.1	0.0	EN
C32	Offset (Terminal C1)	C32	OFFSET C1	-5.0 to +5.0)%		%	0.1	0.0	JE
	Gain (Terminal 12)	C32	GAIN 12	0.0 to 200.0)%		%	0.1	100.0	EN
C33	Analog setting signal filter	C33	REF FILTER	0.00 to 5.00	Os		S	0.01	0.05	

Motor Parameters

Functi	on			Setting range	Unit	Min.	Factory setting	Remarks
Code	Name	LCD	monitor	Setting range	Oilit	unit	—22kW 30kW—	nemarks
P01	Number of motor 1 poles	P01	M1 POLES	2 to 14	pole	2	4	Sets the number poles of the motor 1.
P02	Motor 1 (Capacity)	P02	M1-CAP	22kW or smaller: 0.01 to 45.00 kW 30kW or larger : 0.01 to 500.00 kW	kW	0.01	*1)	Set the applied motor capacity. This setting automatically sets "P03" and "P06" to "P08". Frame must be from -2 to +1. When a frame is outside this range, take a special note.
P03	(Rated current)	P03	M1-Ir	0.00 to 2000 A	Α	0.01	*1)	Sets the motor rated current.
P04	(Tuning)	P04	M1 TUN1	Inactive Inactive (One time tuning of %R1 and %X (on motor stopping mode)) Active (One time tuning of %R1, %X and lo (on motor running mode))	-	-	0	Measure %R1 of motor, and %X and Io at base frequency. When "1" is selected, data is stored in "P07" and "P08". When "2" selected, data is stored in "P06" to "P08".
P05	(On-line Tuning)	P05	M1 TUN2	0 : Inactive 1 : Active (Real time tuning of %R2)	-	-	0	Data in "P07" and "P08" is not updated.
P06	(No-load current)	P06	M1-lo	0.00 to 2000 A	Α	0.01	*1)	Sets exciting current at torque-vector control.
P07	(%R1 setting)	P07	M1-%R1	0.00 to 50.00 %	%	0.01	*1)	Sets motor primary coil resistance manually.
P08	(%X setting)		M1-%X	0.00 to 50.00 %	%	0.01	*1)	Sets motor leakage inductance at base frequency manually.
P09	(Slip compensation control 1)	P09	SLIP COMP1	0.00 to +15.00 Hz	Hz	0.01	0.00	Sets the slip frequency.

NOTES:

^{*1)} Typical value of Fuji standard motor
*2) Percent shall be set according to Function code "P02" or "A09", motor capacity.
Torque referenced here may not be obtainable when "P02" or "A09" is set at "0".

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

High Performance Functions

Functi	on			Sotting young		Min.	Factory setting	
Code	Name	LCD	monitor	Setting range	Unit	unit	-22kW 30kW-	Remarks
H03	Data initializing (Data reset)	H03	DATA INIT	: Manual set value : Return to factory set value	-	-	0	When data code is set at "1", all function data is returned to initial data (factory setting data). Automatically returns to "0" after initializing.
H04	Auto-reset (Times)	H04	AUTO-RESET	0 (Inactive), 1 to 10 times	-	1	0	
H05	(Reset interval)	H05	RESET INT	2 to 20s	S	1	5	
H06	Fan stop operation	H06	FAN STOP	0 : Inactive 1 : Active (Fan stops at low temperature mode (1.5kW or larger)	-	-	0	
H07	ACC/DEC (Mode select) pattern	H07	ACC PTN	0 : Linear 1 : S-curve (weak) 2 : S-curve (strong) 4 : Non-linear (For variable torque load)	-	-	0	
H08	Rev. phase sequence lock	H08	REV LOCK	0 : Inactive 1 : Active	-	-	0	
H09	Start mode (Rotating motor pick up)	H09	START MODE	Inactive Active (Only Auto-restart after momentary power failure mode) Active (All start mode)		-	0	
H10	Energy-saving operation	H10	ENERGY SAV	Inactive : Active (Only when torque boost "F09" is in manual setting mode	-	-	G11S:0 (G11S•EV:1) P11S:1	
H11	DEC mode	H11	DEC MODE	0 : Normal (According to "H07" mode) 1 : Coast-to-stop	-	•	0	
H12	Instantaneous overcurrent limiting	H12	INST CL	0 : Inactive 1 : Active	-	-	1	
H13	Auto-restart (Restart time)	H13	RESTART t	0.1 to 10.0s	S	0.1	0.5	JE Time required until motor residual EN voltage reduces to zero.
H14	(Freq. fall rate)	H14	FALL RATE	0.00 to 100.00 Hz/s	Hz/s	0.01	10.00	
H15	(Holding DC voltage)	H15	HOLD V	200 to 300V (200V class)	V	1	235V (200V class)	
H16	(OPR command selfhold time)	H16	SELFHOLD t	400 to 600V (400V class) 0.0 to 30.0s, 999s (999s: The operation command is	s	0.1	470V (400V class) 999	
H18	Torque control	H18	TRQ CTRL	held during DC link circuit voltage is larger than 50V) G11S 0 : Inactive (Frequency control)				P11S series does not have
1110	Torque control	1110	mg ome	1: Active (Torque control by terminal 12 (Driving)) (0 to +10V/0 to 200%) 2: Active (Torque control by terminal 12 (Driving & Braking)) (0 to +10V/0 to 200%)	-		0	Gain for frequency setting is disabled.
				P11S 0 : Inactive (Fixed)	-	-	0	
H19	Active drive	H19	AUT RED	0 : Inactive 1 : Active	-	•	0	When the acceleration time is longer than 60s, this function prevents inverter trip due to overvurrent, to accelerates motor in a shortest time.
H20	PID control (Mode select)	H20	PID MODE	0 : Inactive 1 : Active 2 : Active (inverse operation mode)	-	-	0	E01-E09:20 C33 E01-E09:21
H21	(Feedback signal)	H21	FB SIGNAL	0 : Terminal 12 (0 to +10V) 1 : Terminal C1 (4 to 20mA) 2 : Terminal 12 (+10 to 0V) 3 : Terminal C1 (20 to 4mA)	-	-	1	
H22	(P-gain)	H22	P-GAIN	0.01 to 10.00	-	0.01	0.10	
H23	(I-gain)	H23	I-GAIN	0.0 : Inactive 0.1 to 3600.0s	S	0.1	0.0	
H24	(D-gain)	H24	D-GAIN	0.00 : Inactive 0.01 to 10.0s	s	0.01	0.00	
H25	(Feedback filter)	H25	FB FILTER	0.0 to 60.0s	s	0.1	0.5	
H26	PTC thermistor (Mode select)	H26	PTC MODE	0 : Inactive 1 : Active	-	-	0	
H27	(Level)	H27	PTC LEVEL	0.00 to 5.00V	V	0.01	1.60	
H28	Droop operation	H28	DROOP	G11S: -9.9 to 0.0Hz P11S: 0.0 (Fixed)	Hz	0.1	0.0	P11S does not have this function.
H30	Serial link(Function select)	H30	LINK FUNC	(Code) (Monitor) (Frequency (Operation command)	-	-	0	Selects type of LINK operation mode.
				1: X X - 2: X - X 3: X X X (X: Valid -: Invalid)				F01:11, C30:11, E01-E09:24,25, F02
H31	, ,	H31	485ADDRESS	1 to 31	-	1	1	
H32	(Mode select on no response error)	H32	MODE ON ER	Trip and alarm (Er8) Operation for H33 timer, and alarm (Er8) Operation for H33 timer, and retry to communicate. If the retry fails, then the inverter trips("Er 8"). Continuous operation	-		0	
H33	(Timer)		TIMER	0.0 to 60.0s	s	0.1	2.0	
H34	(Baud rate)	H34	BAUD RATE	0 : 19200 bit/s 1 : 9600 2 : 4800 3 : 2400 4 : 1200	-	-	1	

2. Common Specifications

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Functi	on				Setting range	Unit	Min.	Factory	setting	Remarks
Code	Name	LCD r	monitor		Setting range	Oill	unit	—22kW	30kW—	nemarks
H35	(Data length)	H35	LENGTH	0 : 8 bit	1 : 7 bit	-	-	()	
H36	(Parity check)	H36	PARITY	0 : No checking 1 : Even parity 2 : Odd parity	ı	-	·	()	
H37	(Stop bits)		STOP BITS	0 : 2 bit	1 : 1 bit	-	-	()	
H38	(No response error detection time)	H38	NO RES t	0 (No detection),	, 1 to 60s	s	1	()	
H39	(Response interval)	H39	INTERVAL	0.00 to 1.00s		S	0.01	0.0	01	

Alternative Motor Parameters

Functi	on		Unit	Min.	Factory setting	Domostro		
Code	Name	LCD	monitor	Setting range	Unit	unit	—22kW 30kW—	Remarks
A01	Maximum frequency 2	A01	MAX Hz-2	G11S : 50 to 400Hz P11S : 50 to 120Hz	Hz	1	60 (EN: 50)	Sets the maximum output frequency for motor 2.
A02	Base frequency 2	A02	BASE Hz-2	G11S : 25 to 400Hz P11S : 25 to 120Hz	Hz	1	60 (EN: 50)	
A03	Rated voltage 2 (at Base frequency 2)	A03	RATED V-2	0V (Free) : The output voltage in proporpion to the power supply voltage is set. 80 to 240V : AVR active (200V class) 320 to 480V : AVR active (400V class)	V	1	220 (EN: 200) (200V class) 380 (EN: 400) (400V class)	Sets the output voltage at the Base frequency 2 "A02".
A04	Maximum voltage 2 (at Maximum frequency 2)	A04	MAX V-2	80 to 240V : AVR active (200V class) 320 to 480V : AVR active (400V class)	V	1	220 (EN: 200) (200V class) 380 (EN: 400) (400V class)	Sets the output voltage at the Maximum frequency 2 "A01".
A05	Torque boost 2	A05	TRQ BOOST2	0.0 : Automatic (for constant torque load) 0.1 to 0.9 : Manual (for variable torque load) 1.0 to 1.9 : Manual (for proportional torque load) 2.0 to 20.0 : Manual (for constant torque load)	-	0.1	G11S: 0.0 (G11S-EV: 1) P11S: 0.1	
A06	Electronic (Select) thermal overload relay	A06	ELCTRN OL2	0 : Inactive 1 : Active (for 4-pole standard motor) 2 : Active (for 4-pole inverter motor)	-	-	1	
A07	for motor 2 (Level)	A07	OL LEVEL2	Approx. 20 to 135% of the inverter rated current, in Ampere	Α	0.01	*1)	
A08	(Thermal time constant)		TIME CNST2	0.5 to 75.0 min	min	0.1	5.0 10.0	
A09	Torque vector control 2	A09	TRQVECTOR2	0 : Inactive 1 : Active	-	-	0	
A10	Number of motor-2 poles	A10	M2 POLES	2 to 14	-	2	4	Sets the number of poles of motor 2.
A11	Motor 2 (Capacity)	A11	M2-CAP	22kW or smaller : 0.01 to 45.00 kW 30kW or larger : 0.01 to 500.00 kW	kW	0.01	*1)	Set the applied motor capacity. This setting automatically sets "P03" and "P06" to "P08". Frame must be from -2 to +1. When a frame is outside this range, take a special note.
A12	(Rated current)	A12	M2-Ir	0.00 to 2000 A	Α	0.01	*1)	Sets the motor rated current.
A13	(Tuning)	A13	M2 TUN1	Inactive Active (One time tuning of %R1 and %X (on motor stopping mode)) Active (One time tuning of %R1, %X and lo (on motor running mode))	-	-	0	Measure %R1 of motor, and %X and lo at base frequency. When "1" is selected, data is stored in "A16" and "A17". When "2" selected, data is stored in "A15" to "A17".
A14	(On-line Tuning)	A14	M2 TUN2	0 : Inactive 1 : Active (Real time tuning of %R1 and %X)	-	-	0	Data in "A16" and "A17" is not updated.
A15	(No-load current)	A15	M2-lo	0.00 to 2000 A	Α	0.01	*1)	Sets exciting current at torque-vector control.
A16	(%R1 setting)	A16	M2-%R1	0.00 to 50.00 %	%	0.01	*1)	Sets motor primary coil resistance manually. $ \text{$^{\circ}$R1=\frac{R1+\text{Cable R}}{V(\sqrt{3}\times I)}$ x 100} $ R1: Motor primary resistance $[\Omega]$ Cable R : Resistance at output side cable V : Rated voltage $[V]$ I : Motor rated current $[A]$
A17	(%X setting)		M2-%X SLIP COMP2	0.00 to 50.00 % 0.00 to +15.00 Hz	%	0.01	*1)	Sets motor leakage inductance at base frequency manually. X1+X2 x XM / X2+XM + Cable X + Ca

2.3.2 FVR-E11S Series

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

(Fundamental Functions

	Funct Code	tion Name	Setting range	Min. unit	Factory setting
	F00		0 : Data change enable		0
		Frequency command 1	1 : Data protection 0 : KEYPAD operation (♠ or ♠ key)	-	0
Sic Particular Particu			1 : Voltage input (terminal 12) (0 to +10V DC, 0 to +5V DC) 2 : Current input (terminal C1) (4 to 20mA DC) 3 : Voltage and current input (terminals 12 and C1) 4 : Reversible operation with polarity (terminal 12)(0 to ±10V DC) 5 : Inverse mode operation (terminal 12) (+10 to 0V DC) 6 : Inverse mode operation (terminal C1) (20 to 4mA DC) 7 : UP/DOWN control 1 (initial freq. = 0Hz) 8 : UP/DOWN control 2 (initial freq. = last value)	-	0
	F02	Operation method	0 : KEYPAD operation (forward/reverse : by signal input) 1 : FWD or REV command signal operation 2 : KEYPAD operation (FWD) 3 : KEYPAD operation (REV)	-	2
	F03	Maximum frequency 1	50 to 400Hz	1Hz	60(EN:50)
-	F04	<u> </u>	25 to 400Hz	1Hz	60(EN:50)
	FUS	Rated voltage 1 (at Base frequency 1)	0(Free), 160 to 480V (400V class) 0(Free), 80 to 240V (200V class)	1V	380(EN:400) 220(EN:230)
	F08	Maximum voltage 1 (at Maximum frequency 1)	160 to 480V (400V class) 80 to 240V (200V class)	1V	400 200(EN:230)
	FO9	Acceleration time 1	0.01 to 3600s	0.01s	6.00
	F08		0.01 to 3600s	0.01s	6.00
		Torque boost 1	0 : Automatic (for constant torque load) 1 : Manual (for variable torque load) 2 : Manual (for proportional torque load) 3 to 31 : Manual (for constant torque load)	1	0
	F 1U	Electronic thermal (Select) overload relay for motor 1	0 : Inactive 1 : Active (for 4-pole standard motor) 2 : Active (for 4-pole inverter motor)	-	1
	F 11	(Level)	Approx. 20 to 135% of rated current	0.01A	*1)
	F 12 F 13	(Thermal time constant) Electronic thermal	0.5 to 10.0 min 0 : Inactive	0.1min	5.0
		overload relay (for braking resistor)	1 : Active (for external braking resistor : DB \bigcup - \bigcup C) 2 : Active (for external braking resistor : TK80W 120Ω; Single phase only)	-	0
	F 14	Restart mode after momentary power failure	0 : Inactive (Trip and alarm when power failure occurs.) 1 : Inactive (Trip, and alarm when power recovers.) 2 : Inactive (Deceleration stop, and alarm.) 3 : Active (Momentarily stops and restarts at output frequency of before power failure) 4 : Active (Momentarily stops and restarts at starting frequency)	-	1 (EN:0)
	F 15	Frequency (High)	0 to 400Hz	1Hz	70
	F 18		0 to 400Hz	1Hz	0
	F 19 F 18	Gain (for frequency setting signal) Bias frequency	0.0 to 200.0% -400 to +400Hz	0.1% 1Hz	100.0
			0.0 to 60.0Hz	0.1Hz	0.0
	F2 1	(Braking level)	0 to 100%	1%	0
	F22 F23	Starting frequency (Freq.)	0.0 (DC brake inactive), 0.1 to 30.0s 0.1 to 60.0Hz	0.1s 0.1Hz	0.0
	F 24	(Holding time)	0.0 to 10.0s	0.1s	0.0
	F25	Stop frequency	0.1 to 6.0Hz	0.1Hz	0.2
	F28		0.75 to 15kHz 0 : Level 0 2 : Level 2	1kHz	2(EN:15)
	F27		1 : Level 1 3 : Level 3	-	0
		FMA, FMP (Select)	0 : Analog output (FMA) 1 : Pulse output (FMP)	-	0
	F 30		0 to 200%	1%	100
	F3 I	(Function)	0 : Output frequency 1 (Before slip compensation) 1 : Output frequency 2 (After slip compensation) 2 : Output voltage 3 : Output toltage 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback value 8 : DC link circuit voltage		0
	F33		300 to 6000 p/s (at full scale)	1p/s	1440
	F 34	(Voltage adjust)	0% : (Pluse rate output: 50% duty) 1 to 200% : (Voltage adjust: 2670p/s, duty adjust)	1%	0
	F3S	(Function)	0 : Output frequency 1 (Before slip compensation) 1 : Output frequency 2 (After slip compensation) 2 : Output current 3 : Output voltage 4 : Output torque 5 : Load factor 6 : Input power 7 : PID feedback value 8 : DC link circuit voltage	-	0
	F 36	30Ry operation mode	0 : The relay (30) excites on trip mode. 1 : The relay (30) excites on normal mode.	-	0
	-	Torque limiter 1 (Driving)	20 to 200, 999% (999: No limit) *2)	1%	999(EN:180)
	F41 F42	(Braking) Torque-vector control 1	20 to 200, 999% (999: No limit) *2) 0 : Inactive	1%	999(EN:150)

^{*1)} Typical value of standard Fuji 4P motor.
*2) Percent shall be set according to FUNCTION CODE: P02 or A11, Motor capacity.

2. Common Specifications

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

Extension Terminal Functions

	Funct		Setting range	Min. unit	Factory setting
		Name		1	, ,
X1-X5 Terminal	E0 1	X1 terminal function	Selects from the following items.	-	0
Terminai	E02	X2 terminal function	0 : [SS1] 10 : Motor 2 / Motor 1 [M2/M1] 11 : DC brake command [DCBRK]	-	1
		X3 terminal function	Multistep freq. selection (16 steps) [SS4] 12 : Torque limiter 2 / Torque limiter 1 [TL2/TL1]	-	2
		X4 terminal function	I3 : / ÎSS8Î 13 : UP command ÎUPÎ	-	6
	E05	X5 terminal function	4 : ACC / DEC time selection (1 step) [RT1] 14 : DOWN command [DOWN] 5 : 3-wire operation stop command [HLD] 15 : Write enable for KEYPAD [WE-KP]	-	7
			6 : Coast-to-stop command IBXI 16 : PID control cancel IHz/PIDI		
			7 : Alarm reset RST 17 : Inverse mode changeover		
			8 : Trip command (External fault) [THR] (terminals 12 and Č1) [IVS] 9 : Freq. set. 2 / Freq. set. 1 [Hz2/Hz1] 18 : Link enable (Bus.RS485) [LE]		
ACC 2	E 10	Acceleration time 2	0.01 to 3600s	0.01s	10.0
DEC 2	E !!	Deceleration time 2	0.01 10 000003	0.01s	10.0
	E 18	Torque limiter 2 (Driving)	20 to 200%, 999% (999: No limit) *2)	1%	999(EN:180)
	E 17	(Braking)	0 (Automatic deceleration control), 20 to 200%, 999% (999: No limit) *2)	1%	999(EN:150)
Y1, Y2		Y1 terminal function	Selects from the following items.	-	0
Terminal	E2 1	Y2 terminal function	0 : Inverter running [RUN] 5 : Torque limiting [TL] 1 : Frequency equivalence signal [FAR] 6 : Auto-restarting [IPF]	-	7
			1 : Frequency equivalence signal [FAR] 6 : Auto-restarting [IPF]		
			2 : Frequency level detection FDT 7 : Overload early warning OL 3 : Undervoltage detection signal [LU] 8 : Lifetime alarm (main circuit capacitor) [LIFE]		
			3 : Undervoltage detection signal [LU] 8 : Lifetime alarm (main circuit capacitor) [LIFE] 4 : Torque polarity detection (Braking/Driving) [B/D] 9 : 2nd Freq. equivalence detection [FAR2]		
	E23	Frequency equivalence delay	0.01 to 10.0s	0.01s	0.1
		FAR function signal (Hysteresis)	0.0 to 10.0 Hz	0.1Hz	2.5
		FDT function signal (Level)	0 to 400 Hz	1Hz	60(EN:50)
	E 32	(Hysteresis)	0.0 to 30.0 Hz	0.1Hz	1.0
	E 33	OL function signal (Mode select)	0 : Thermal calculation 1 : Output current	-	0
	E34	(Level)	Approx. 20 to 200% of rated current	0.01A	*1
	E35	(Timer)	0.0 to 60.0s	0.1s	10.0
LED Monitor	E 39	Display coefficient for constant rate of feeding time	0.00 to 9.999	0.001	
	E40	Display coefficient A	0.00 to 200.0	0.01	0.01
		/ Feeding amount	0.00 to 200.0m	0.01m	
		(for constant rate of feeding time)			
		Display coefficient B	0.00 to 200.0	0.01	0.00
	E45	LED Display filter	0.0 to 5.0s	0.1s	0.5

Control Functions of Frequency

	Funct	tion Name	Setting range	Min. unit	Factory setting
Jumn Hz		Jump (Jump freq. 1)	0 to 400Hz	1Hz	0
Jump Hz Control	<u> 202</u>	frequency (Jump freq. 2)	0.10 400112	1Hz	0
	<u> 03</u>	(Jump freq. 3)		1Hz	0
	COY	(Hysteresis)	0 to 30Hz	1Hz	3
Multi-Hz		Multistep (Freq. 1)	0.00 to 400.0Hz	0.01Hz	0.00
Control	05			0.01Hz	0.00
	con	setting (Freq. 3)		0.01Hz	0.00
	<i>E08</i>	(Freq. 4)		0.01Hz	0.00
	<i>E09</i>	(Freq. 5)		0.01Hz	0.00
	E 10	(Freq. 6)		0.01Hz	0.00
	EII	(Freq. 7)		0.01Hz	0.00
	E 12	(Freq. 8)		0.01Hz	0.00
	<u>E 13</u>	(Freq. 9)		0.01Hz	0.00
	<u> [14</u>	(Freq.10)		0.01Hz	0.00
	<u>E 15</u>	(Freq.11)		0.01Hz	0.00
	<u>E 15</u>	(Freq.12)		0.01Hz	0.00
	<u>[</u>	(Freq.13)		0.01Hz	0.00
	<u>E 18</u>	(Freq.14)		0.01Hz	0.00
	E 19	(Freq.15)		0.01Hz	0.00
Timer Operation	E2 I	Timer operation	0 : Inactire 1 : Active	-	0
•	553	(Stage 1)	Operation time: 0.00 to 3600s	0.01s	0.00
	£ 30	Frequency command 2	0 : KEYPAD operation (♠ or ♠ key)		
			to Same as F01 Same as F01	-	2
	E3 I	Offset (Terminal 12)	-5.0 to +5.0%	0.1%	0.0
	£32	(Terminal C1)	-5.0 to +5.0%	0.1%	0.0
	E 33	Analog setting signal filter	0.00 to +5.00s	0.01s	0.05

Motor Parameters

	Funct Code	tion Name	Setting range	Min. unit	Factory setting
Motor 1	PO 1	Number of motor 1 poles	2 to 14	2	4
	P02	Motor 1 (Capacity)	3.7kW or smaller: 0.01 to 5.50 kW 5.5kW or larger : 0.01 to 11.00 kW	0.01kW	*1)
	Р03 Р0Ч	(Rated current)	0.00 to 99.9 A	0.01A	*1)
	PO4	(Tuning)	0 : Inactive 1 : Active (One time tuning of %R1 and %X (on motor stopping mode)) 2 : Active (One time tuning of %R1, %X and lo (on motor running mode))	-	0
	P05	,	0 : Inactive 1 : Active (Real time tuning of %R2)	-	0
	P06 P07 P08 P09	(No-load current)	0.00 to 99.9 A	0.01A	*1)
	P07	(%R1 setting)	0.00 to 50.00 %	0.01%	*1)
	P08	(%X setting)	0.00 to 50.00 %	0.01%	*1)
	P09	(Slip compensation control 1)	0.00 to +15.00Hz	0.01Hz	0.00
	P 10	(Slip compensation response time)	0.01 to 10.00s	0.01s	0.50

The function marked can be set while the inverter is running. Other functions must be set while the inverter is stopped.

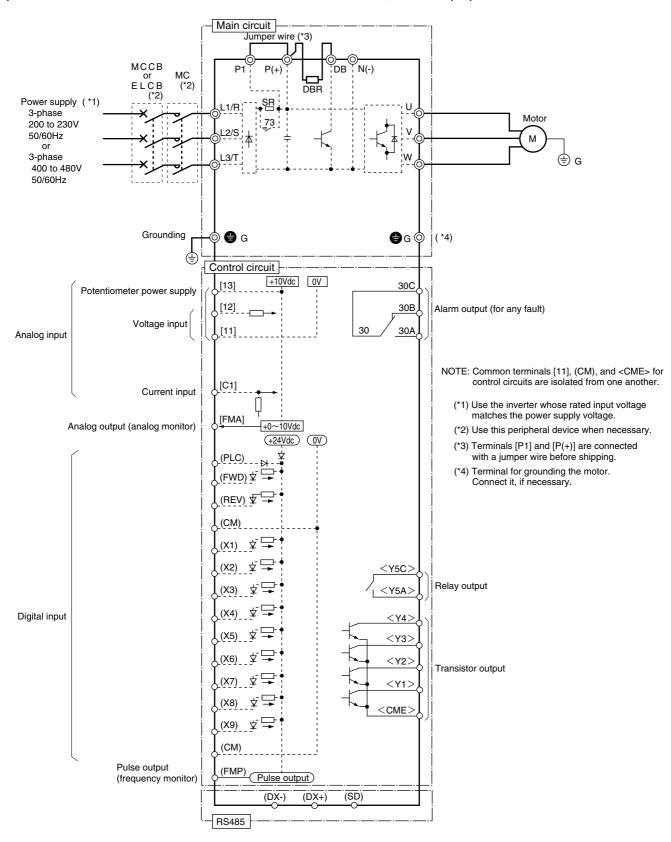
High Performance Functions

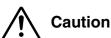
Code Name Setting range Setting rang		Func	tion		Min.	
Principle Prin				Setting range		Factory setting
Montholistics Montholistic	High	H0 1	Accumulated operation time	Monitoring only	1h	0
Management Common Common	Performance	HD2	Trip history	Monitoring only	- 1	-
Hospital Fig. Reset interval St. 200	Functions	H03	Data initializing (Data reset)	0 : Manual set value 1 : Return to factory set value	-	0
MC Fan stop operation 0		HD4	Auto-reset (Times)		1	0
Horizon 1		HOS	(Reset interval)	2 to 20s	1s	5
Start mode				1 : Active (Fan stops at low temperature mode) for 1.5kW or larger model only	-	0
Robusting motor pick up 1			pattern	1 : S-curve (weak) 3 : Non-linear (For variable torque load)	-	0
B DEC mode			(Rotating motor pick up)	1 : Active (Only when Auto-restart after momentary power failure mode) 2 : Active (All start modes)	-	
B 12 Instantaneous overcurrent 1 Coast-di-stop					-	0
Imiting				1 : Coast-to-stop	-	0
			limiting	1 : Active	-	
PD Control Mode select			` ,			, ,
Control	DID				0.01Hz/s	10.00
H22	PID Control	HZU 	PID control (Mode select)	1 : Active (PID output 0 to 100% / Frefuency 0 to max.)	-	0
H23		H2 I	(Feedback signal)		-	1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			(P-gain)	** ** ***		
M25 Freehack filter Note select Note			(I-gain)			
Y1,Y2 #26 PTC (thermistor (Mode select) 0 Inactive 1 Active - 0 M2B Droop operation -9.9 to 0.0Hz 0.01V 1.60 0.1Hz 0.0 Serial Link M3B Serial link (Function select) (Code) (Monitor) (Frequency command) (Operation command) X: Valid - 0 M3B RS 485 (Address) 1 1 1 1 M3B (Mode select on no response error) 1 10 st. Tip and alarm (Er8) 1		H24	(D-gain)	0.00 : Inactive 0.01 to 10.0s	0.01s	0.00
M28					0.1s	
M28 Droop operation -9.9 to 0.0Hz -9.9	Y1, Y2		PTC thermistor (Mode select)			
Note	Ierminai					
H3 RS 485					0.1Hz	0.0
H32	Serial Link			0: X X:Valid 1: X X:Invalid 2: X - X 3: X X	-	0
1			, ,		1	1
H34		H32		1 : Operation for H33 timer, and alarm (Er8) 2 : Operation for H33 timer, and retry to communicate. * If the retry fails, then the inverter trips("Er 8").	-	0
1 : 9600		H33	(Timer)	0 to 60.0s	0.1s	2.0
H 36		нзч	(Baud rate)		-	1
H37		H35	(Data length)		-	
H 38						•
H H H H H H H H H H			` ' '			•
Diagnostic HTID Maximum temperature of heat sink Monitoring only Monitoring only C - HTID Maximum effective current Monitoring only Monitoring only A - HTID Main circuit capacitor lifetime Monitoring only 0.1% - HTID Cooling fan accumulated operation time operation time Monitoring only operation time 10h - HTID HID HID - - HTID			, ,			
HH I Maximum effective current Monitoring only A - HH I Main circuit capacitor lifetime Monitoring only 0.1% - HH I Cooling fan accumulated operation time Monitoring only 10h - HH I Inverter ROM version Monitoring only - - HH S Keypad panel ROM version Monitoring only - -						
H42 Main circuit capacitor lifetime Monitoring only 0.1% - H43 Cooling fan accumulated operation time Monitoring only 10h - H44 Inverter ROM version Monitoring only - - H45 Keypad panel ROM version Monitoring only - -	Diagnostic			* '	_	
HY3 Cooling fan accumulated operation time Monitoring only 10h - HY4 Inverter ROM version Monitoring only - - HY5 Keypad panel ROM version Monitoring only - -						
operation time Inverter ROM version HY45 Inverter ROM version Monitoring only HY5 Keypad panel ROM version Monitoring only					0.1%	-
HYS Keypad panel ROM version Monitoring only			operation time	, , , , , , , , , , , , , , , , , , ,		-

Alternative Motor Parameters

	Funct	ion Name	Setting range	Min. unit	Factory setting
or 2	80 I	Maximum frequency 2	50 to 400Hz	1Hz	60(EN:50)
	802	Base frequency 2	25 to 400Hz	1Hz	60(EN:50)
	803	Rated voltage 2 (at Base frequency 2)	0 (Free), 160 to 480V (400V class) 0 (Free), 80 to 240V (200V class)	1V	380(EN:400) 220(EN:230)
	804	Maximum voltage 2 (at Maximum frequency 2)	160 to 480V (400V class) 80 to 240V (200V class)	1V	400 200(EN:230)
	<i>R</i> 05	Torque boost 2	0 : Automatic (for constant torque load) 1 : Manual (for variable torque load) 2 : Manual (for proportional torque load) 3 : Manual (for constant torque load)	-	0
	<i>R05</i>	Electronic thermal (Select) overload relay for motor 2	0 : Inactive 1 : Active (for 4-pole standard motor) 2 : Active (for 4-pole inverter motor)	-	1
	807	(Level)	Approx. 20 to 135% of rated current	0.01A	*1)
	<i>R08</i>	(Thermal time constant)	0.5 to 10.0 min	0.1min	5.0
	809	Torque vector control 2	0 : Inactive 1 : Active	-	0
		Number of motor 2 poles	2 to 14	2	4
		Motor 2 (Capacity)	0.01 to 11.00 kw	0.01kW	*1)
	R 12	(Rated current)	0.00 to 99.9 A	0.01A	*1)
	R 13	(Tuning)	0 : Inactive 1 : Active (One time tuning of %R1 and %X (on motor stopping mode)) 2 : Active (One time tuning of %R1, %X and lo (on motor running mode))	-	0
	8 14	(On-line Tuning)	0 : Inactive 1 : Active (Real time tuning of %R1 and %X)	-	0
	R 15	(No-load current)	0.00 to 99.9 A	0.01A	*1)
	8 15	(%R1 setting)	0.00 to 50.00 %	0.01%	*1)
	8 17	(%X setting)	0.00 to 50.00 %	0.01%	*1)
		Slip compensation control 2	0.00 to +15.00 Hz	0.01Hz	0.00
	<i>R 1</i> 9	(Slip compensation resnonse time)	0.01 to 10.00 s	0.01s	0.5

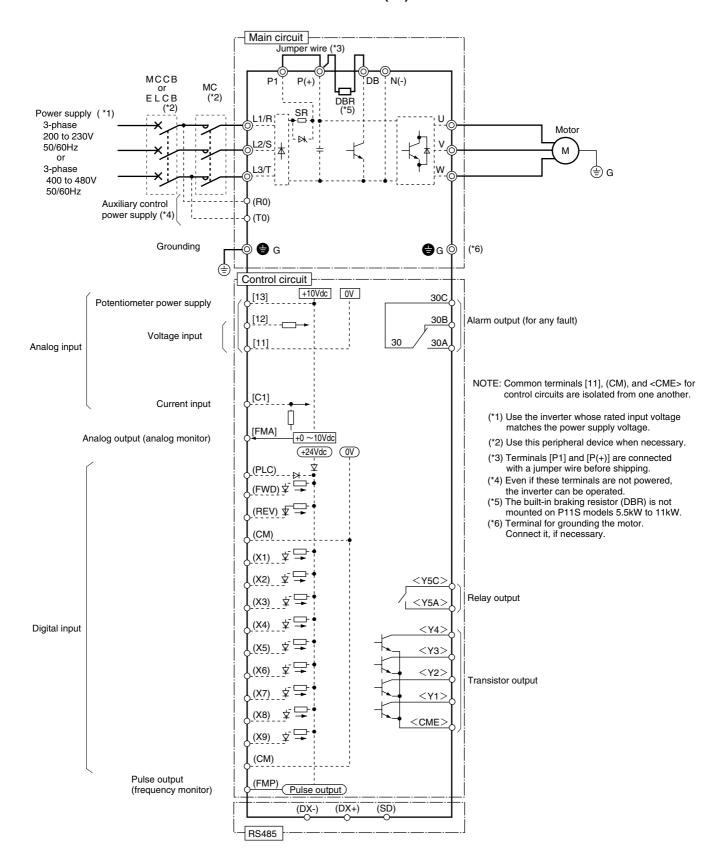
3. Wiring Diagram




Caution

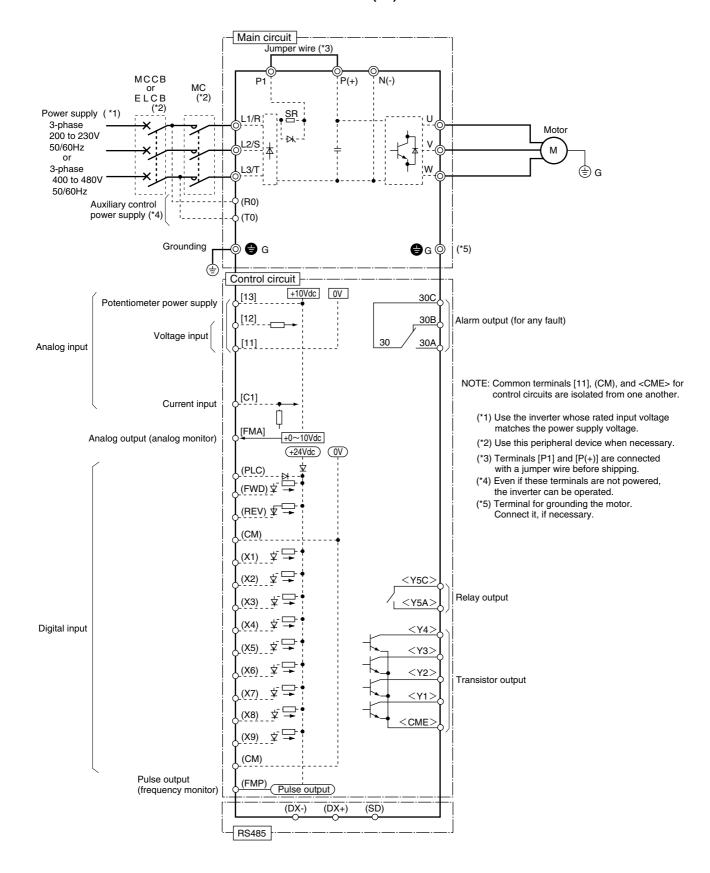
The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

3. Wiring Diagram

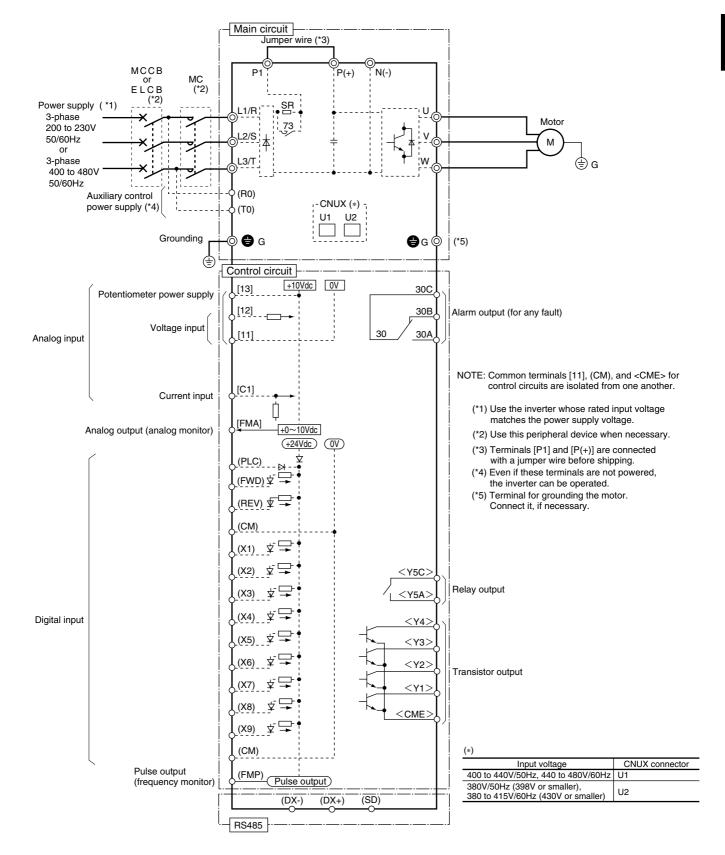

- 3.1 FRENIC5000G11S/P11S
- 3.1.1 Wiring diagram before shipment from factory
- (1) 200V/400V series FRENIC5000G11S: 0.2 to 0.75kW / 0.4, 0.75kW (JE)

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

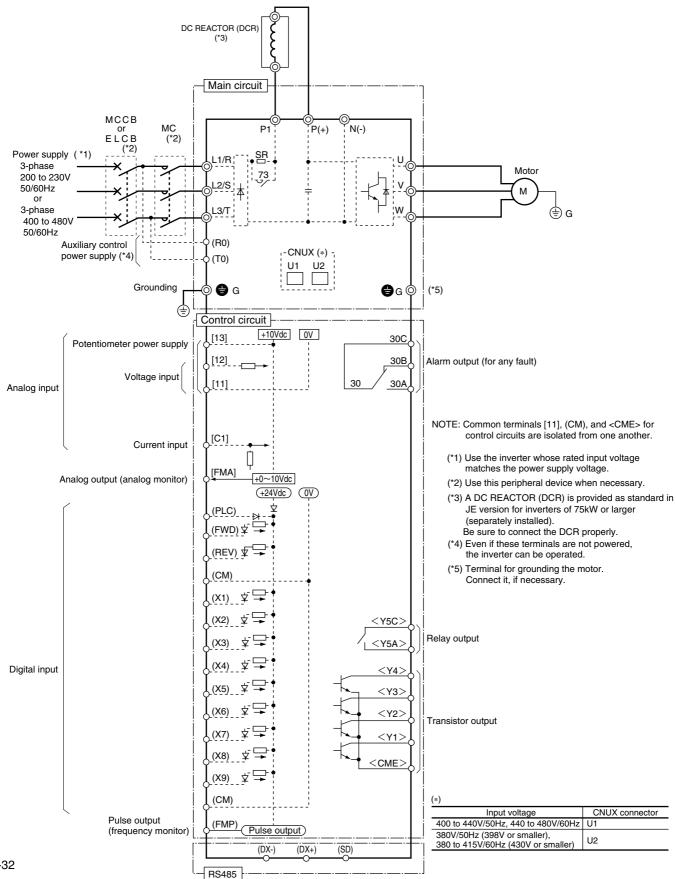
(2) 200V/400V series FRENIC5000G11S: 1.5 to 7.5kW (JE) FRENIC5000P11S: 5.5 to 11kW (JE)



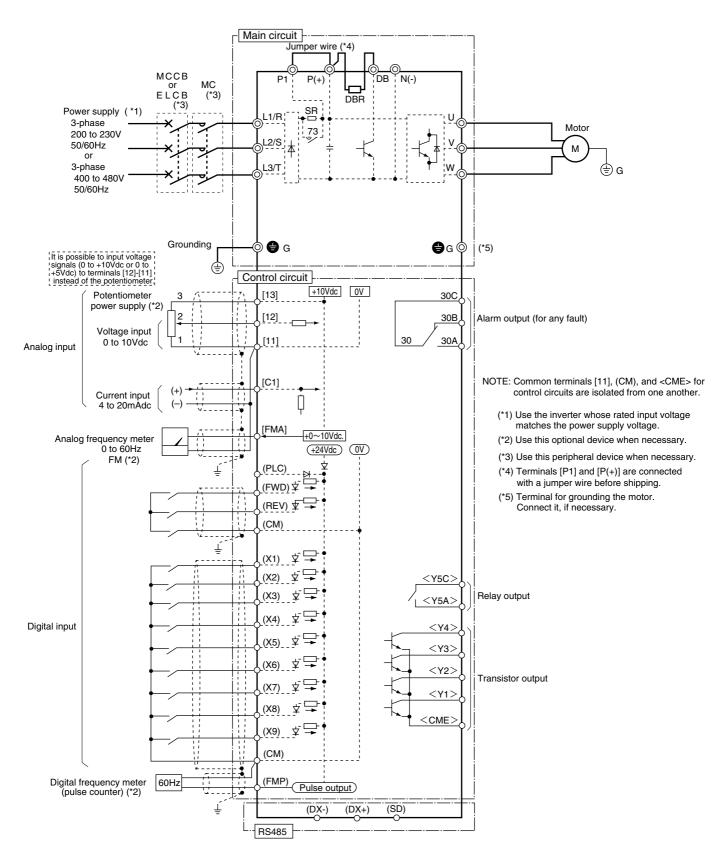
3. Wiring Diagram


The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

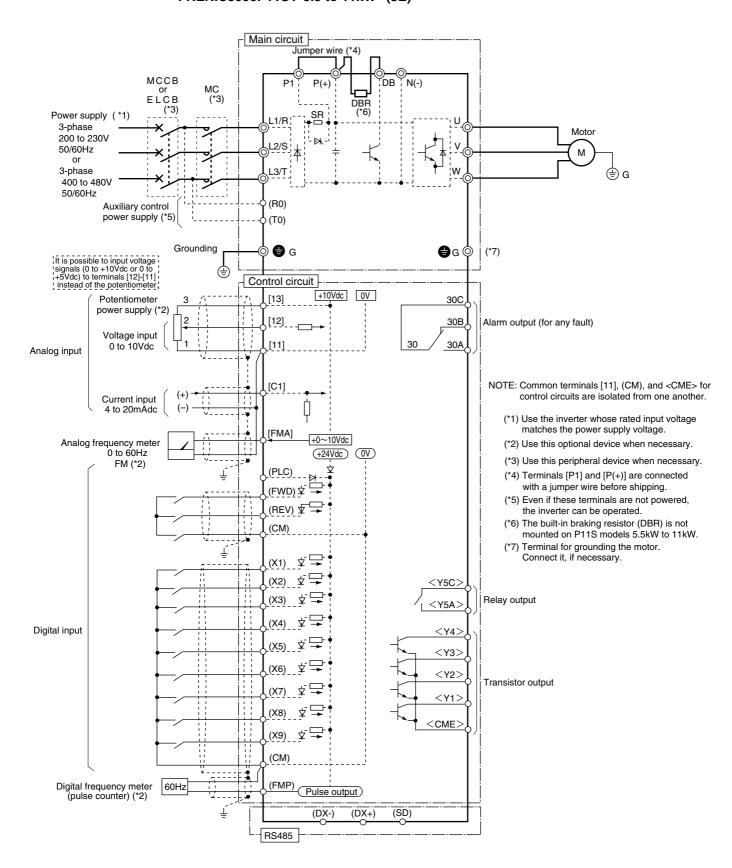
(3) 200V/400V series FRENIC5000G11S: 11 to 22kW (JE) FRENIC5000P11S: 15 to 22kW (JE)

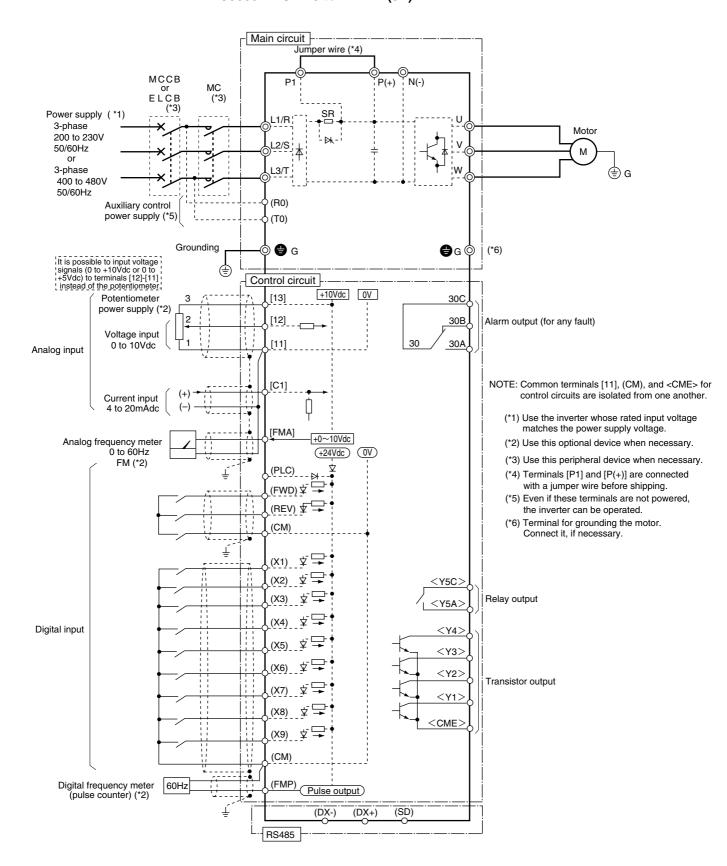

(4) 200V/400V series FRENIC5000G11S: 30 to 55kW (JE) FRENIC5000P11S: 30 to 55kW (JE)

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

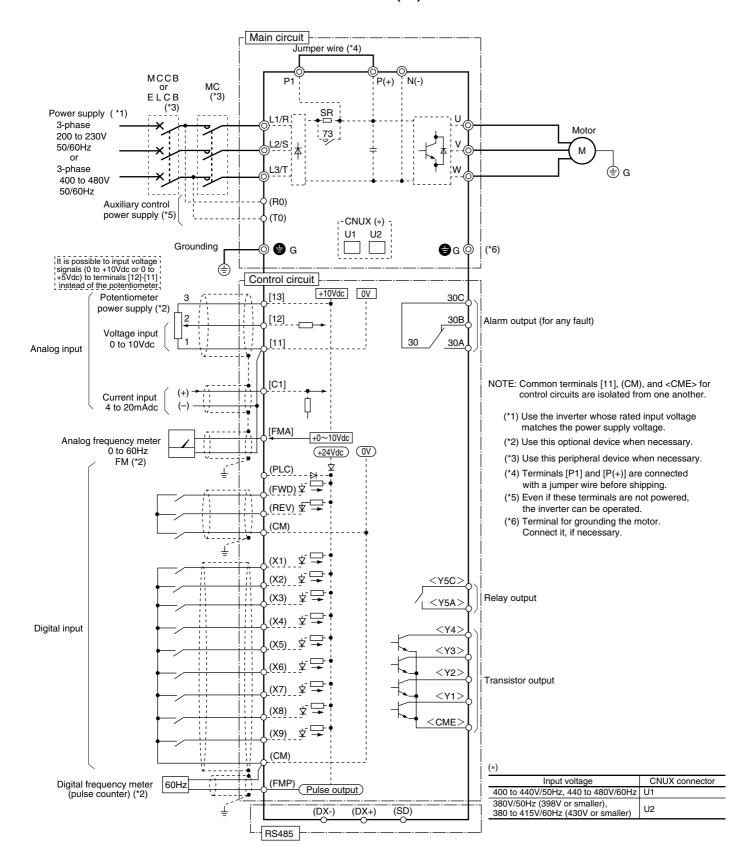

FRENIC5000G11S: 75, 90kW / 75 to 400kW (5) 200V/400V series FRENIC5000P11S: 75 to 110kW / 75 to 500kW (JE)

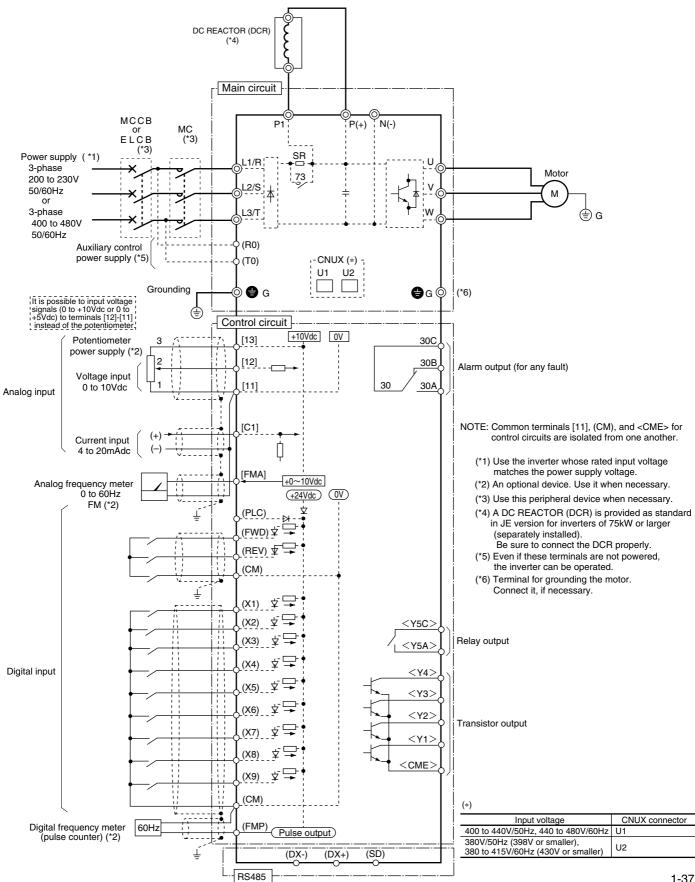
3.1.2 Basic wiring diagram


(1) 200V/400V series FRENIC5000G11S: 0.2 to 0.75kW / 0.4, 0.75kW (JE)


The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

(2) 200V/400V series FRENIC5000G11S: 1.5 to 7.5kW (JE) FRENIC5000P11S: 5.5 to 11kW (JE)

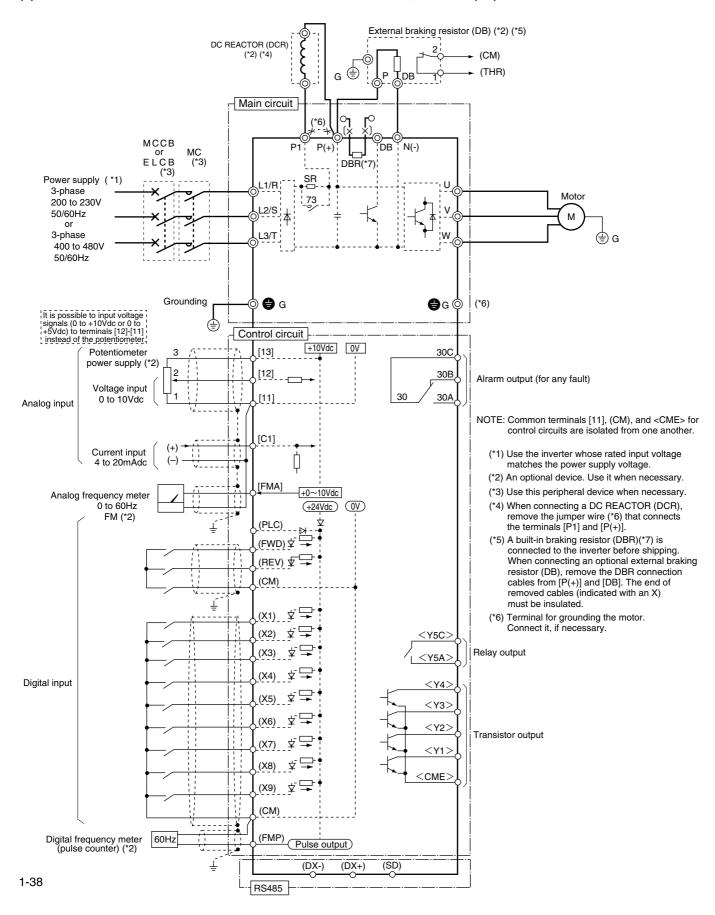

(3) 200V/400V series FRENIC5000G11S: 11 to 22kW (JE) FRENIC5000P11S: 15 to 22kW (JE)


The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

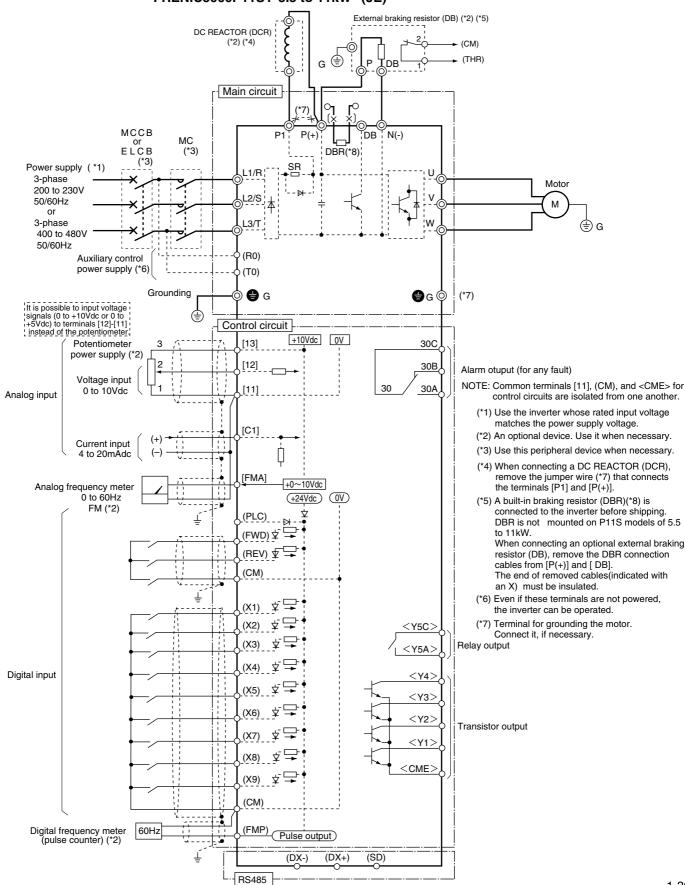
(4) 200V/400V series FRENIC5000G11S: 30 to 55kW (JE) FRENIC5000P11S: 30 to 55kW (JE)

(5) 200V/400V series FRENIC5000G11S: 75, 90kW / 75 to 400kW FRENIC5000P11S: 75 to 110kW / 75 to 500kW

Chapter 1

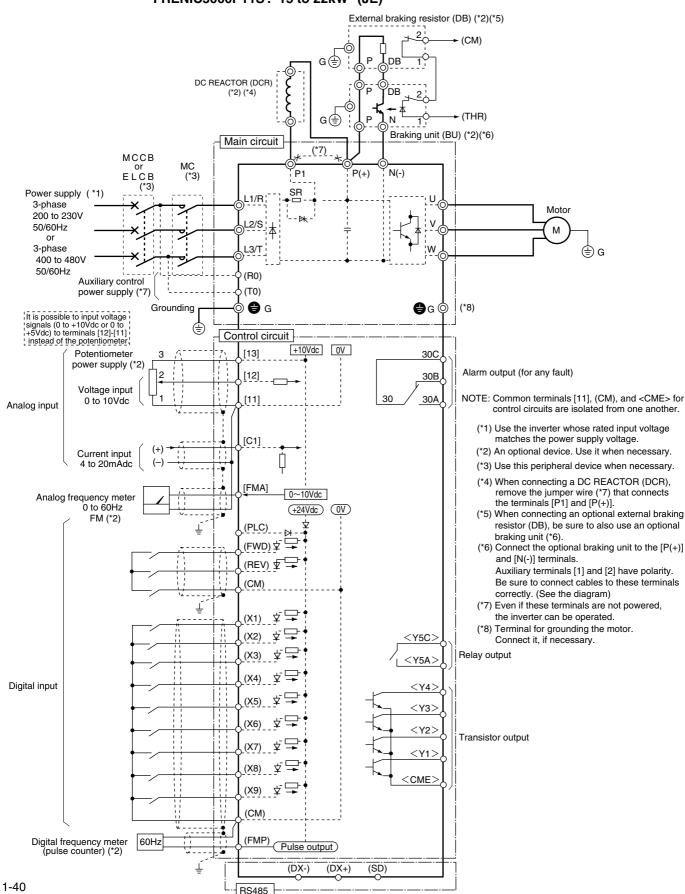

3. Wiring Diagram

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.


3.1.3 Wiring diagram using options

(1) 200V/400V series FRENIC5000G11S: 0.2 to 0.75kW / 0.4, 0.75kW (JE)

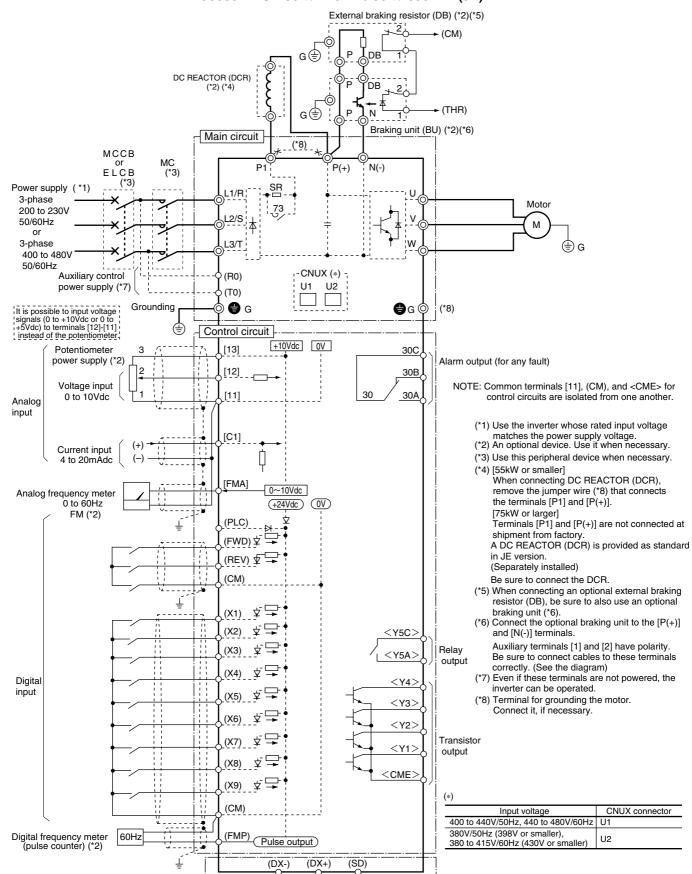
(2) 200V/400V series FRENIC5000G11S: 1.5 to 7.5kW (JE) FRENIC5000P11S: 5.5 to 11kW (JE)


Chapter 1

3. Wiring Diagram

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

(3) 200V/400V series FRENIC5000G11S: 11 to 22kW (JE) FRENIC5000P11S: 15 to 22kW (JE)



The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

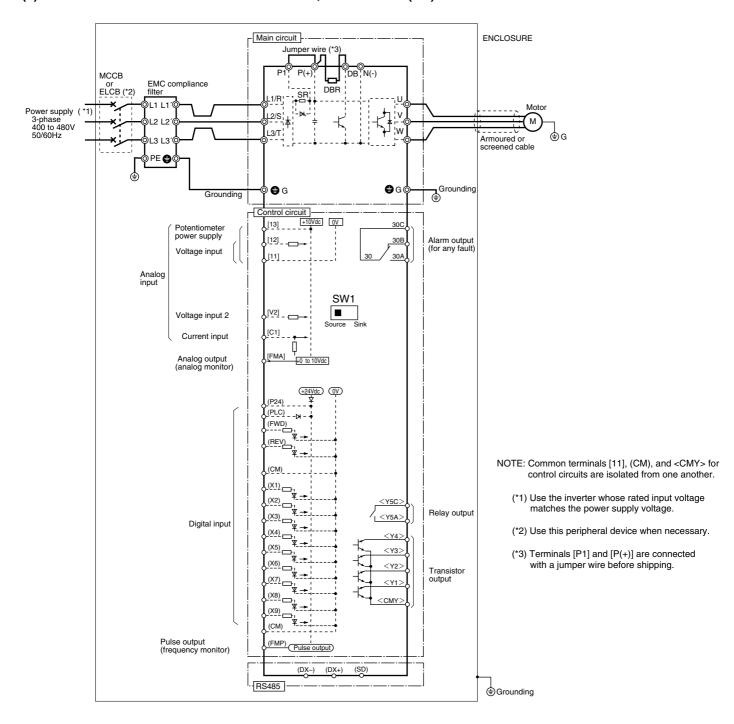
(4) 200V/400V series FRENIC5000G11S: 30 to 90kW / 30 to 400kW (JE) FRENIC5000P11S: 30 to 110kW / 30 to 500kW (JE)

RS485

Chapter 1

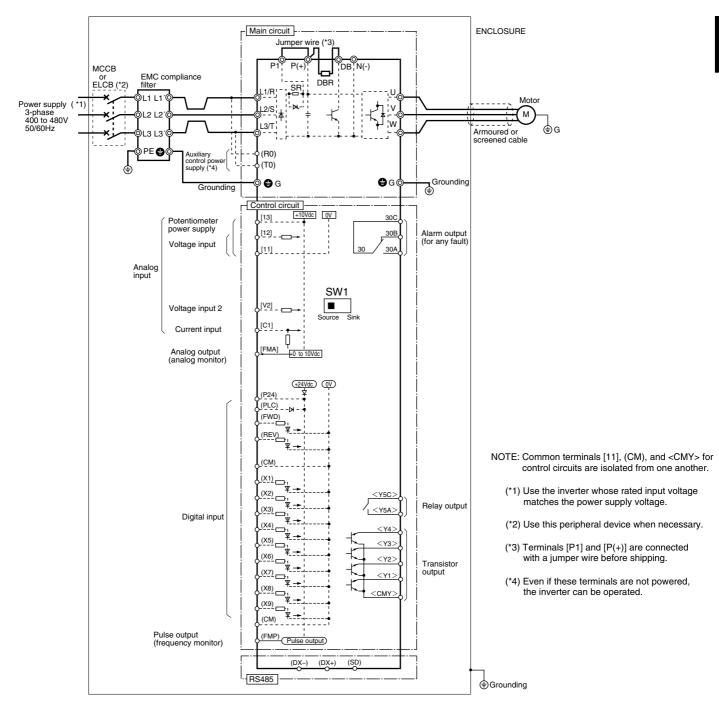
3. Wiring Diagram

Caution


The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

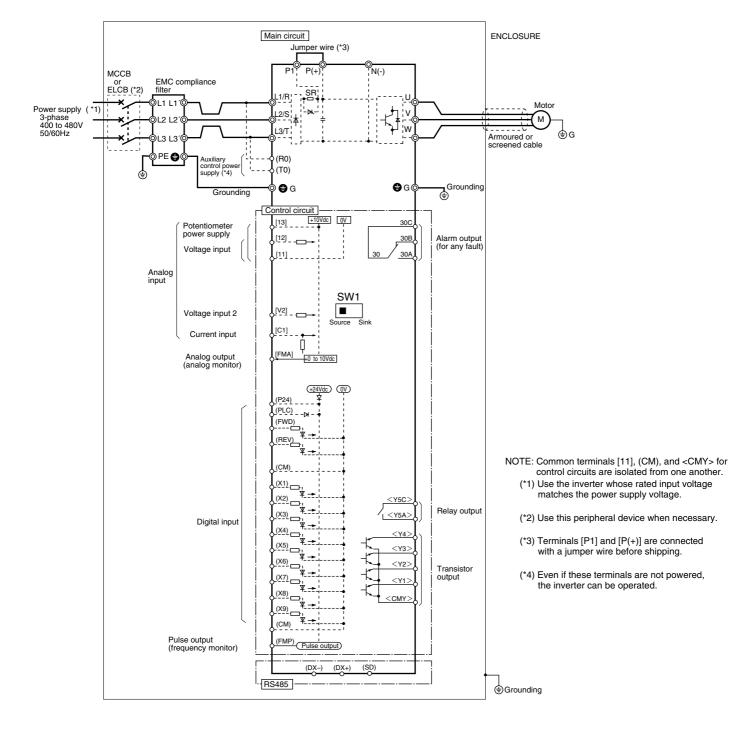
3.1.4 Wiring diagram before shipment from factory

(1) 400V series


FRENIC5000G11S: 0.4, 0.75kW

(EN)

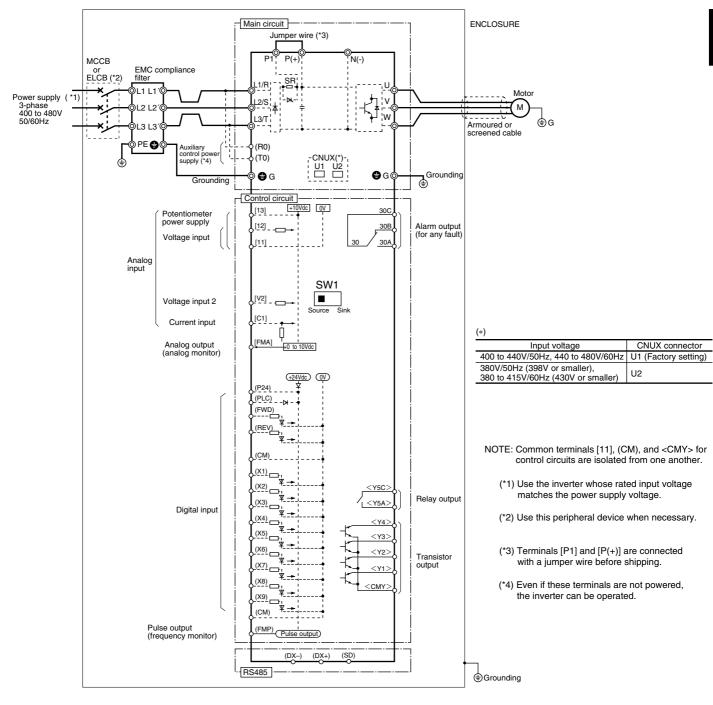
(2) 400V series FRENIC5000G11S: 1.5 to 7.5kW (EN)



Caution

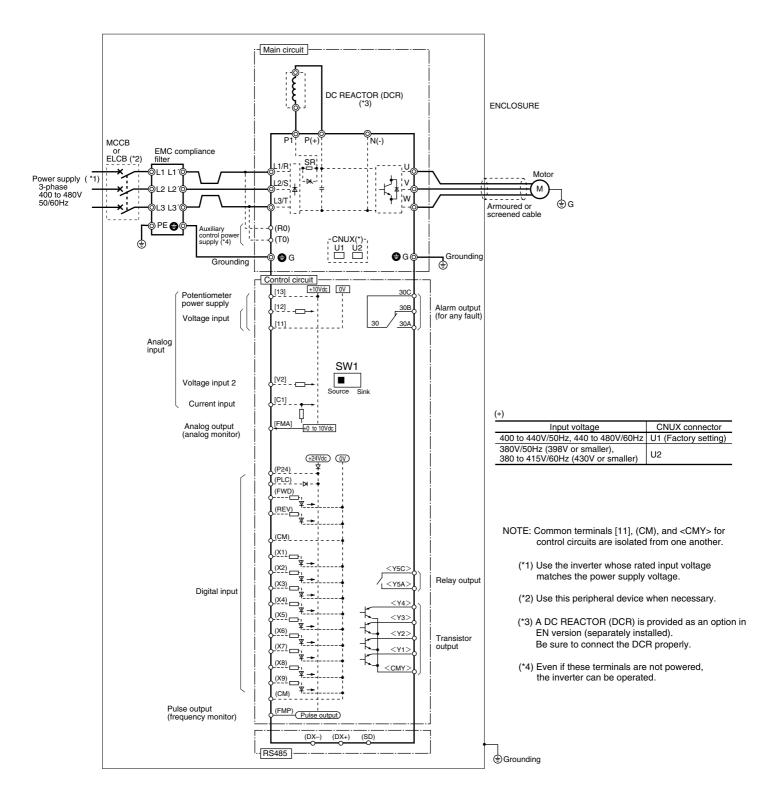
The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

(3) 400V series FRENIC5000G11S: 11 to 22kW (EN)



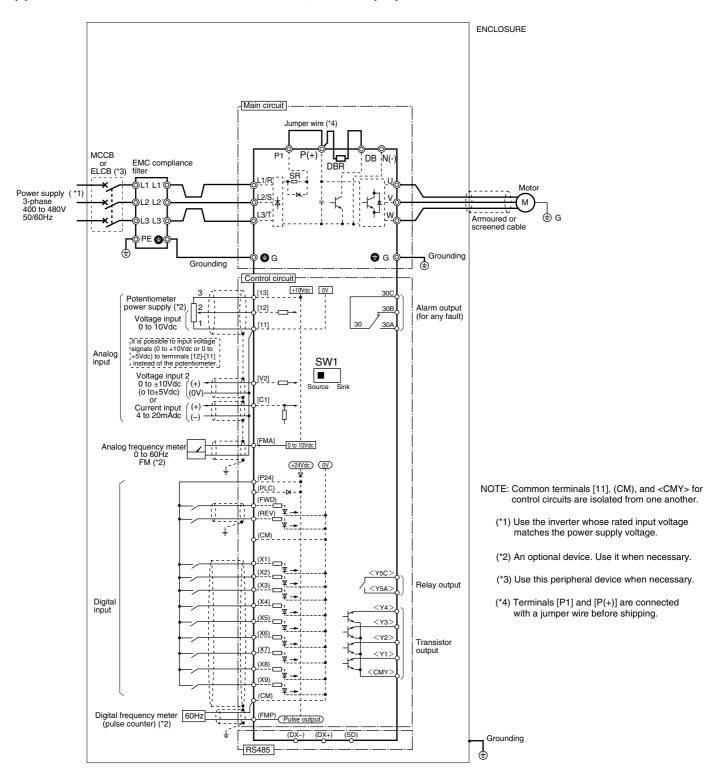
Caution

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.


(4) 400V series FRENIC5000G11S: 30 (EV), 30 to 55kW (EN)

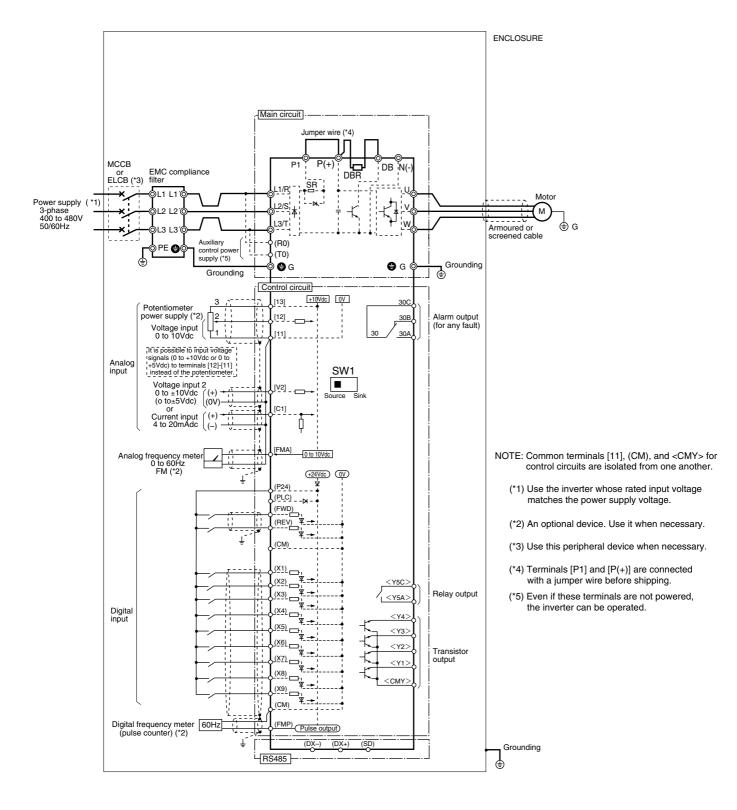
The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

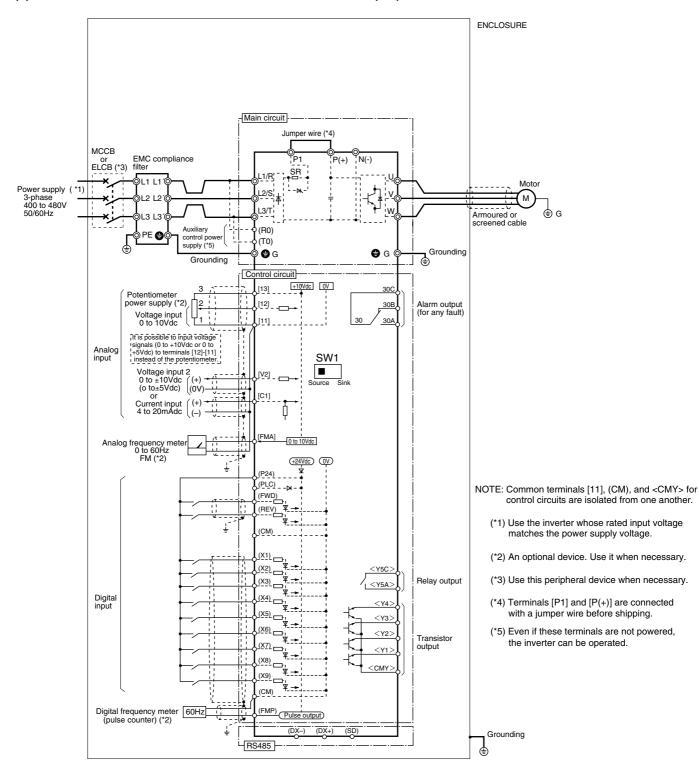
(5) 400V series FRENIC5000G11S: 75 to 400kW (EN)



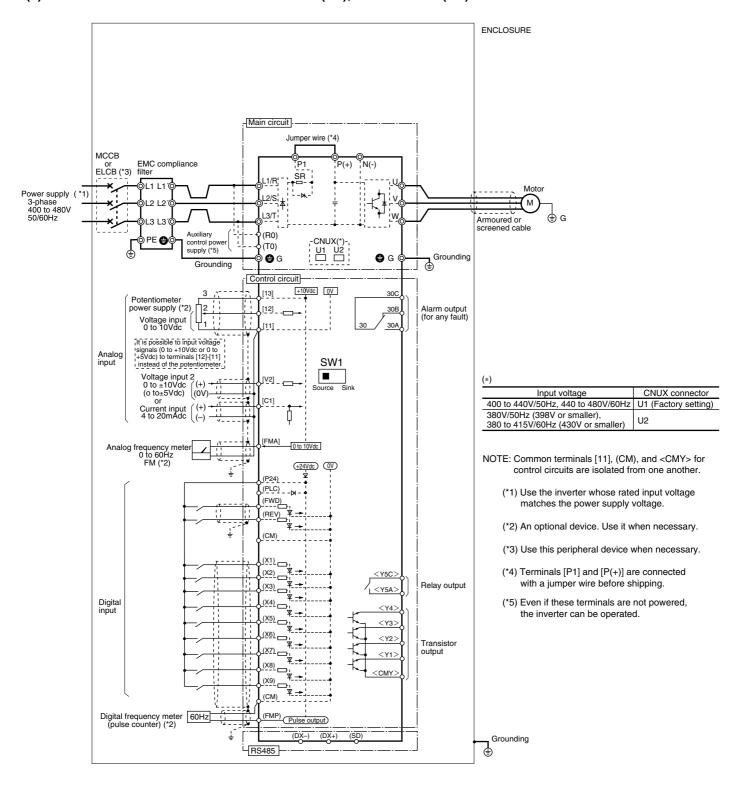
3.1.5 Basic wiring diagram

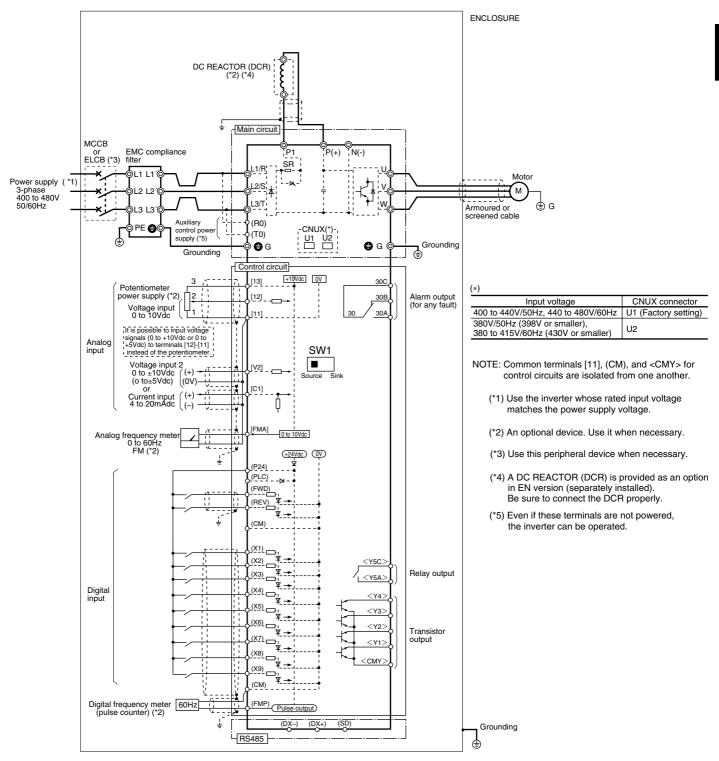
(1) 400V series


FRENIC5000G11S: 0.4, 0.75kW (EN)


The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

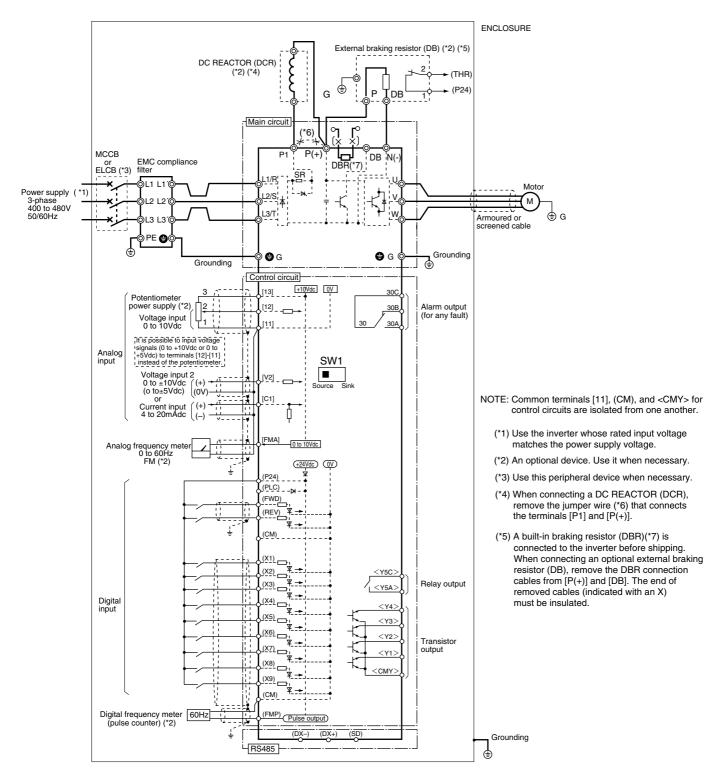
(2) 400V series FRENIC5000G11S: 1.5 to 7.5kW (EN)

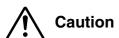

(3) 400V series FRENIC5000G11S: 11 to 22kW (EN)


The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

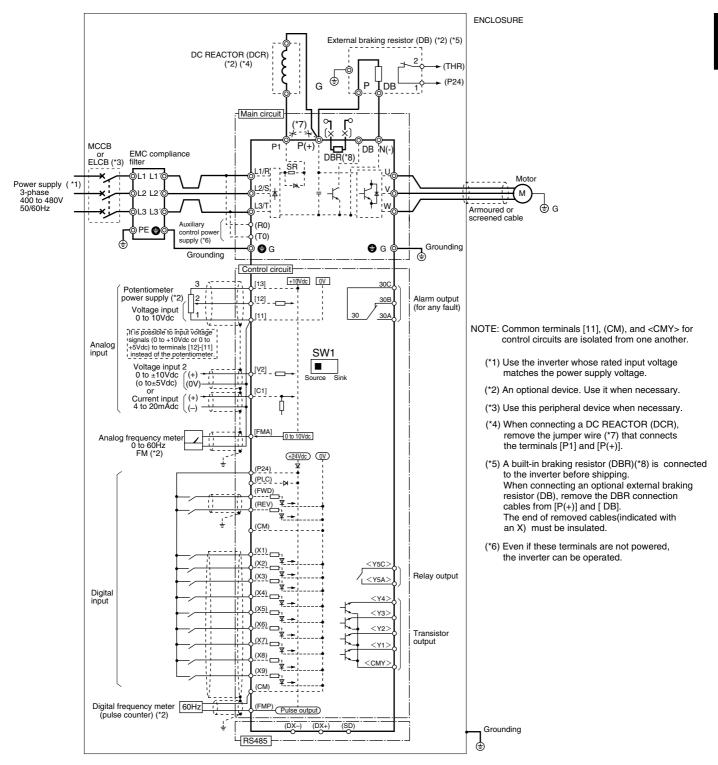
(4) 400V series FRENIC5000G11S: 30 (EV), 30 to 55kW (EN)

(5) 400V series FRENIC5000G11S: 75 to 400kW (EN)

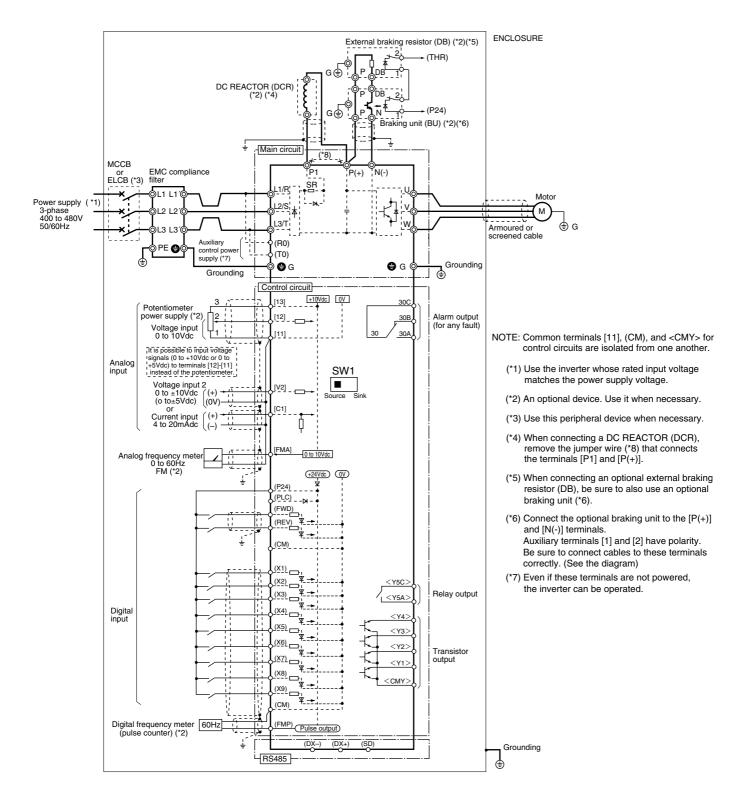

Caution

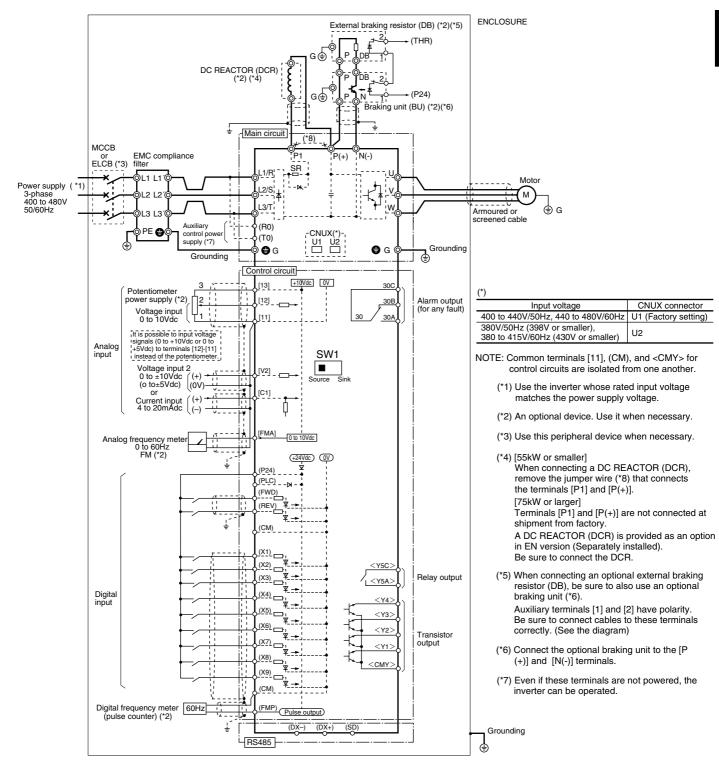

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

3.1.6 Wiring diagram using options


(1) 400V series

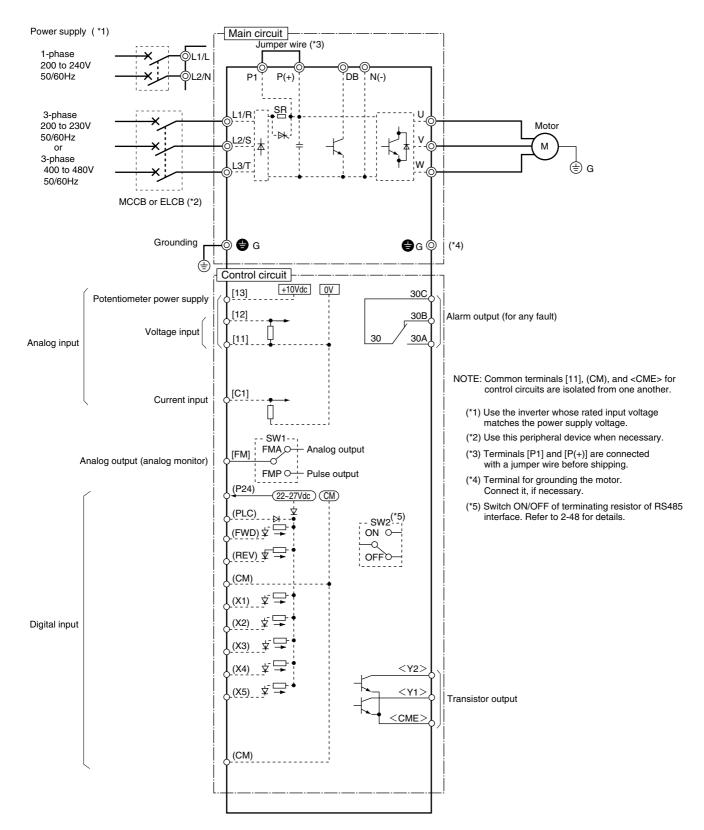
FRENIC5000G11S: 0.4, 0.75kW (EN)


(2) 400V series FRENIC5000G11S: 1.5 to 7.5kW (EN)

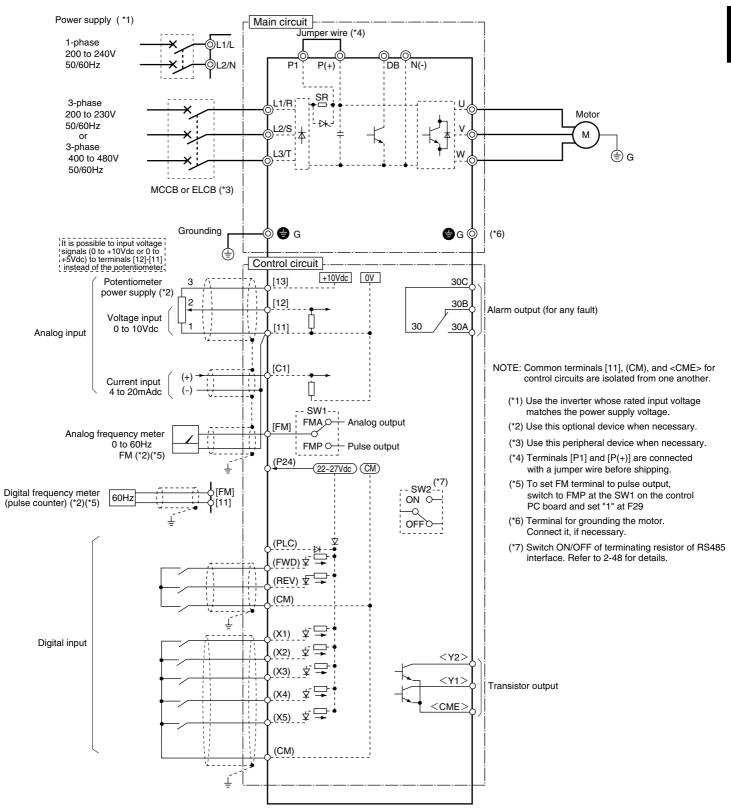

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

(3) 400V series FRENIC5000G11S: 11 to 22kW (EN)

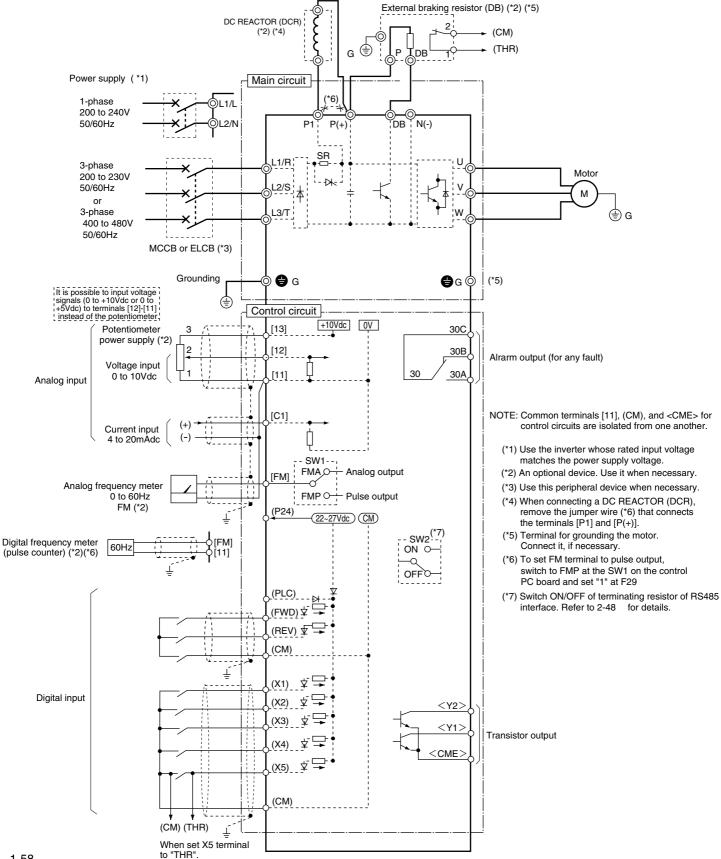
(4) 400V series FRENIC5000G11S: 30 (EV), 30 to 400kW (EN)



Caution

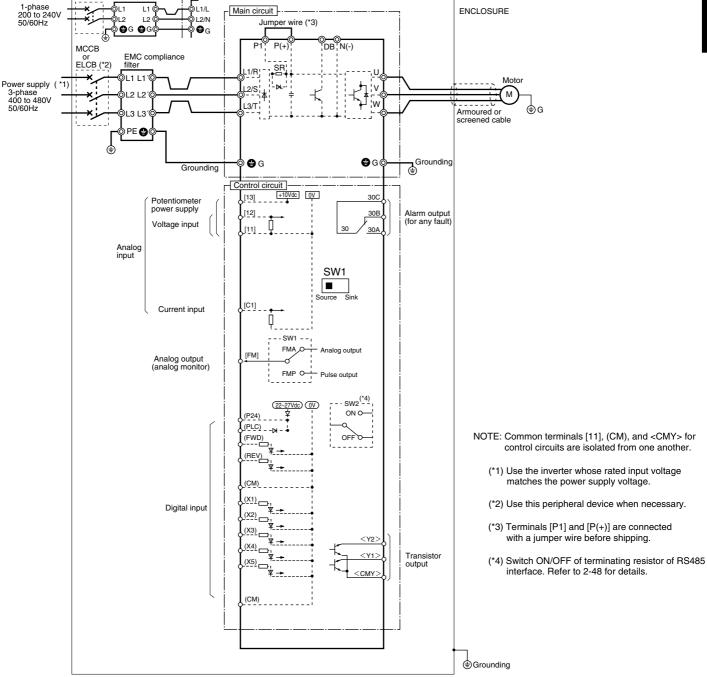

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

3.2 FVR-E11S Series3.2.1 Wiring diagram before shipment from factory200V/400V series FVR-E11S (JE)


3.2.2 Basic wiring diagram 200V/400V series FVR-E11S (JE)

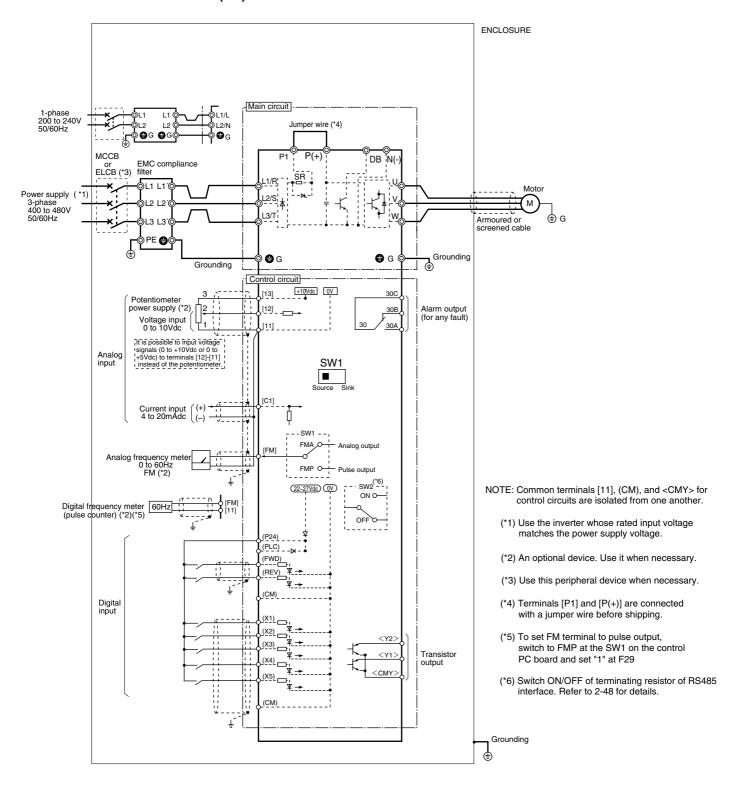
The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

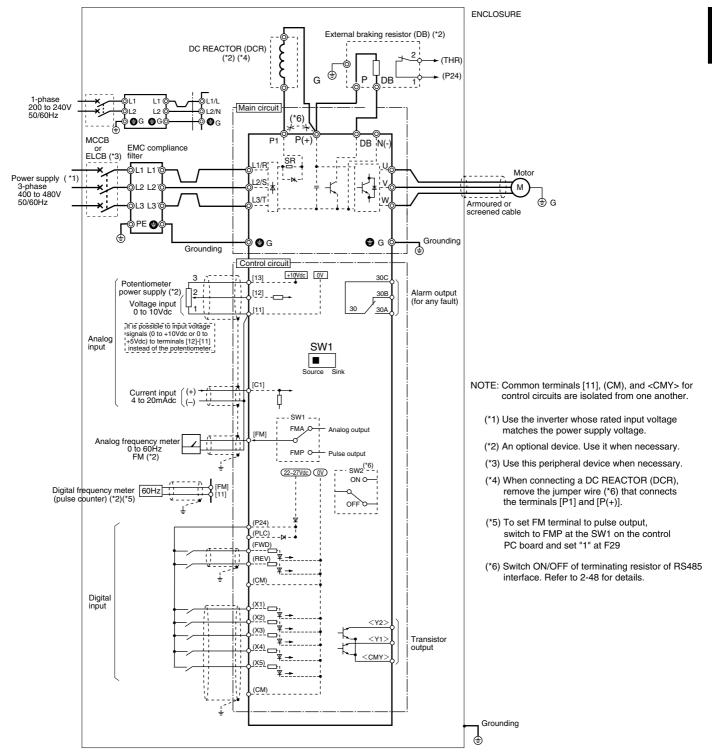
3.2.3 Wiring diagram using options 200V/400V series FVR-E11S (JE)



1-58

The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.


3.2.4 Wiring diagram before shipment from factory 200V/400V series FVR-E11S (EN)


The information described in this document is for the purpose of selecting the appropriate product only. Before actually using this product, be sure to read the Instruction Manual carefully to ensure proper operation.

3.2.5 Basic wiring diagram 200V/400V series FVR-E11S (EN)

3.2.6 Wiring diagram using options 200V/400V series FVR-E11S (EN)

Chapter 1

4. Terminal

4. Terminal

4.1 Terminal functions

4.1.1 FRENIC5000G11S/P11S Series

	Symbol	Terminal name	Functions	Remarks	Func. code
Main circuit		Power input	Connect a 3-phase power supply.		
	U, V, W	Inverter output	Connect a 3-phase induction motor.		
	P1, P(+)	For DC REACTOR	Connect the DC REACTOR for power-factor correcting or harmonic current reducing.	DC REACTOR: Option (for 55kW or smaller)	
	P(+), N(-)	For BRAKING UNIT	Connect the BRAKING UNIT (Option). Used for DC bus connection system.	BRAKING UNIT (Option): G11S:11kW or larger, P11S: 15kW or larger	
	P(+), DB	For EXTERNAL BRAKING RESISTOR	Connect the EXTERNAL BRAKING RESISTOR (Option)	Only for 7.5kW or smaller (G11S), 11kW or smaller (P11S)	
	⊕ G	Grounding	Ground terminal for inverter chassis (housing).		
	R0, T0	Auxiliary control power supply	Connect the same AC power supply as that of the main circuit to back up the control circuit power supply.	0.75kW or smaller: Not correspond	
Analog input	13	Potentiometer power supply	+10V DC power supply for frequency setting POT (POT: 1 to $5k\Omega$)	Allowable maximum output current : 10mA	F01, C30
	12	Voltage input (Reversible operation)	O to +10V DC/0 to 100% (0 to +5V DC/0 to 100%) Selected by function setting. O to ±10V DC /0 to ±100% (0 to ±5V DC/0 to ±100%) (Setting resolution of 0 to ± 10V DC is twice.) Selected by function setting or digital input signal. +10 to 0V DC/0 to 100%	Input impedance: 22kΩ Allowable maximum input voltage: ±15V DC If input voltage is 10 to 15V DC, the inverter estimates it to10V DC.	
		(Torque control)	Used for torque control reference signal.	 	 H18
		' '	Used for PID control reference signal or feedback signal.		F01, H21
		·	Used for reference signal of PG feedback control (option)		101,1121
	C1	Current input	4 to 20mA DC/0 to 100% Selected by function setting or digital input signal. 20 to 4mA DC/0 to 100%	Input impedance: 250Ω Allowable maximum input current: 30mA DC If input current is 20 to 30mA DC , the inverter estimates it to 20mA DC.	
		(PID control)	Used for PID control reference signal or feedback signal.		F01, H21
		·	The PTC thermisor (for motor protection) can be connected to terminal 13-C1-11.	Change over the Pin switch on control board. (SW2 : PTC) (EN only)	H26, H27
	V2	Voltage input 2	0 to +10V DC	Can't change over the terminal C1. (EN only)	F01
	11	Common	Common for analog signal	Isolated from terminal CME and CM.	101
Digital	FWD	Forward operation	FWD: ON The motor runs in the forward direction.	When FWD and REV are simulta-	F02
input	REV	commond Reverse operation	FWD: OFF The motor decelerates and stops. REV: ON The motor runs in the reverse direction.	neously ON, the motor decelerates and stops.	1 02
		commond	REV : OFF The motor decelerates and stops.	ON state association in the state of OV	F04 +- F00
	X1	Digital input 1	These terminals can be preset as follows.	ON state maximum input voltage: 2V (maximum source current : 5mA)	E01 to E09
	X2	Digital input 2		· OFF state maximum terminal	
	X3	Digital input 3		voltage: 22 to 27V	
	X4	Digital input 4		(allowable maximum leakage current: 0.5mA)	
	X5	Digital input 5		Garreria Gierra y	
	X6	Digital input 6			
	X7	Digital input 7			
	X8	Digital input 8			
	X9 (SS1) (SS2) (SS4) (SS8)	Digital input 9	(SS1) : 2 (0, 1) different frequencies are selectable. (SS1,SS2) : 4 (0 to 3) different frequencies are selectable. (SS1,SS2,SS4) : 8 (0 to 7) different frequencies are selectable.	Frequency 0 is set by F01 (or C30). (All signals of SS1 to SS8 are OFF)	 C05 to C19
			(SS1,SS2,SS4,SS8) : 16 (0 to 15) different frequencies are selectable.		
	(RT1) (RT2)		(RT1) : 2 (0, 1) different ACC / DEC times are selectable. (RT1,RT2): 4 (0 to 3) different ACC / DEC times are selectable.	Time 0 is set by F07/F08. (All signals of RT1 to RT2 are OFF)	F07, F08 E10 to E15
	(HLD)	3-wire operation stop command	Used for 3-wire operation. (HLD): ON The inverter self-holds FWD or REV signal. (HLD): OFF The inverter releases self-holding.	Assigned to terminal X7 at factory setting.	

	Symbol	Terminal name	Functions	Remarks	Func. code
Digital input	(BX)	Coast-to-stop command	(BX): ON The inverter output is cut off immediately and the motor will coast-to-stop. (No alarm signal will be output.)	The motor restarts from 0Hz by turning off BX with the operation command (FWD or REV) ON. Assigned to terminal X8 at factory setting.	
	(RST)	Alarm reset	(RST): ON Faults are reset. (This signal should be held for more than 0.1s.)	During normal operating, this signal is ignored. Assigned to terminal X9 at factory setting.	
	(THR)	Trip command (External fault)	(THR): OFF • The inverter output is cut off and the motor coasts-to-stop. Alarm signal will be output. • This signal is held internally and is reset by inputting RST signal. • Used to protect overheating of external braking resistor.	This alarm signal is held internally.	
	(JOG)	Jogging operation	(JOG): ON JOG frequency is effective.	This signal is effective only while the inverter is stopping.	C20
	(Hz2/Hz1)	Freq. set 2 / Freq. set 1	(Hz2/Hz1): ON Freq. set 2 is effective.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.	C30, F01
	(M2/M1)	Motor 2 / Motor 1	(M2/M1): ON The motor circuit parameter and V/f characteristics are changed to the second motor's ones.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.	A10 to A18, P01 to P09
	(DCBRK)	DC brake command	(DCBRK): ON The DC injection brake is effective. (In the inverter deceleration mode)	If the operation command(FWD/REV) is input while DC braking is effective, the operation command (FWD/REV) has priority.	F20 to F22
	(TL2/TL1)	Torque limiter 2 / Torque limiter 1	(TL2/TL1): ON Torque limiter 2 is effective.		E16, E17, F40, F41
	(SW50)	Switching operation between line and inverter (50Hz)	(SW50(SW60)): ON The motor is changed from inverter operation to line operation. (SW50(SW60)): OFF	Main circuit changeover signals are output through Y1 to Y5 terminal.	
	(SW60)	Switching operation between line and inverter (60Hz)	The motor is changed from line operation to inverter operation.		
	(UP)	UP command	(UP): ON The output frequency increases.	When UP and DOWN commands are	F01,C30
	(DOWN)	DOWN command	(DOWN): ON The output frequency decreases. The output frequency change rate is determined by ACC / DEC time. Restarting frequency can be selected from 0Hz or setting value at the time of stop.	simultaneously ON, DOWN signal is effective.	
	(WE-KP)	Write enable for KEYPAD	(WE-KP): ON The data is changed by KEYPAD.	[F00
	(Hz/PID)	PID control cancel	(Hz/PID): ON The PID control is canceled, and frequency setting by KEYPAD (H20 to H25
	(IVS)	Inverse mode changeover	(IVS): ON Inverse mode is effective in analog signal input.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.	F01, C30
	(IL)	Interlock signal for 52-2	When a switch is connected between inverter and motor, connect its auxiliary NC contact to this terminal. When a momentary power failure occurs, this signal is input.		
	(Hz/TRQ)	TRQ control cancel	(Hz/TRQ): ON The torque control is canceled, and ordinary operation is effective.		H18
	(LE)	Link enable (RS485, Bus)	(LE): ON The link opereation is effective. Used to switch operation between ordinary operation and link operation to communication.	RS485: Standard, Bus: Option	H30
Ī	(U-DI)	Universal DI	This signal is transmitted to main controller of LINK operation.	L]
	(STM)	Pick up start mode	(STM): ON The "Pick up" start mode is effective.	L	H09
	(PG/Hz)	SY-PG enabled	(PG/Hz): ON Synchronized operation or PG-feedback operation is effective.	Option	
	(SYC)	Synchronization command	(SYC): ON The motor is controlled for synchronized operation between 2 axes with PGs.	Option	
	(ZERO)	Zero speed command	(ZERO): ON The motor speed is controlled with the speed reference of zero.	This function can be selected at PG feedback control. Option	

4. Terminal

	Symbol Terminal name		Functions	Remarks	Func. code
Digital	(STOP1)	Forced stop command	(STOP1): OFF The motor decelerates and stops.	Er6 is indicated after the motor stops.	
input	(STOP2)	Forced stop command with Deceleration time4	(STOP2): OFF The motor decelerates and stops with Deceleration time4.		E15
	(EXITE)	Pre-exciting command	(EXITE): ON The magnetic flux can be established preliminary before starting at PG vector mode.		
	PLC	PLC terminal	Connect PLC power supply to avoid malfunction of the inveter that has SINK type digital input,when PLC power supply is off.		
	P24	DC voltage supply	DC voltage supply (+24V, max. 100mA)	EN only	
	CM	Common	Common for digital signal. JE only	Isolated from terminals CME and 11.	
Analog output	FMA	Analog monitor	Output voltage (0 to 10V DC) is proportional to selected function's value as follows. The proportional coefficient and bias value can be preset. • Output frequency 1 (Before slip compensation) (0 to max. frequency) • Output frequency 2 (After slip compensation) (0 to max. frequency) • Output current (0 to 200%)	Allowable maximum output current: 2mA Up to two analog voltmeters can be connnected (Input impedance : 10kΩ)	F30 to F31
	(11)	(Common)	Output voltage (0 to 200%) Output torque (0 to 200%) Load factor (0 to 200%) Input power (0 to 200%) PID feedback value (0 to 100%) PG feedback value (0 to max. speed) DC link circuit voltage (0 to 1000V) Universal AO (0 to 100%)		
Pulse output	FMP (CM)	Pulse rate monitor (Common)	Pulse rate mode: Pulse rate is proportional to selected function's value (50% duty pulse) Average voltage mode: Average voltage is proportional to selected function's value (2670p/s pulse width control) Output frequency 1 (Before slip compensation) (0 to max. frequency) Output frequency 2 (After slip compensation) (0 to max. frequency) Output current Output voltage Output voltage Output torque Output torque Output torque Output orque Output o	Allowable maximum output current: 2mA Up to two analog voltmeters can be connected (Input impedance : 10kΩ)	F33 to F35
	СМ	Common	Common for pulse output, EN only	Isolated from terminal CMY and 11.	
Tran-	Y1	Transistor output 1	Output the selected signals from the following items.	ON state maximum output voltage :	E20 to E23
sistor output	Y2	Transistor output 2		2V(JE), 3V (EN) (Allowable maximum sink current : 50mA)	
output	Y3	Transistor output 3		OFF state maximum leakage current : 0.1mA	
	Y4	Transistor output 4		(Allowable maximum voltage : 27V)	<u> </u>
	(RUN)	Inverter running	Outputs ON signal when the output frequency is higher than starting frequency.		
	(FAR)	Frequency equivalence signal	Outputs ON signal when the difference between output frequency and setting frequency is smaller than FAR hysteresis width.		E30
	(FDT1)	Frequency level detection	Outputs ON signal by comparison of output frequency and preset value (level and hysteresis).	Operation level G11S: 0 to 400Hz, P11S: 0 to 120Hz Hysteresis width: 0.0 to 30.0Hz	E31, E32
	(LU)	Undervoltage detection signal	Outputs ON signal when the inverter stops by undervoltage while the operation command is ON.		
	(B/D)	Torque polarity	Outputs ON signal in braking or stopping mode, and OFF signal in driving mode.		
	(TL)	Torque limiting	Outputs ON signal when the inverter is in torque-limiting mode.		
	(IPF)	Auto-restarting	Outputs ON signal during auto restart operation (Instanta- neous power failure) mode. (including "restart time")		

	Symbol	Terminal name	Functions	Remarks	Func. code
Tran- sistor output	(OL1)	Overload early warning	Outputs ON signal when the electronic thermal value is higher than preset alarm level. Outputs ON signal when the output current value is higher than preset alarm level.		E33 to E35
	(KP)	KEYPAD operation mode	Outputs ON signal when the inverter is in KEYPAD operation mode.		F02
	(STP)	Inverter stopping	Outputs ON signal when the inverter is in stopping mode or in DC braking mode.		
	(RDY)	Ready output	Outputs ON signal when the inverter is ready for operation.	[
	(SW88)	Line/Inv changeover (for 88)	Outputs 88's ON signal to a switch for line operation in Line/Inverter changeover operation.		
	(SW52-2)	Line/Inv changeover (for 52-2)	Outputs 52-2's ON signal to a switch on inverter power supply side in Line/Inverter changeover operation.		
	(SW52-1)	Line/Inv changeover (for 52-1)	Outputs 52-1's ON signal to a switch on inverter output side in Line/Inverter changeover operation.		
	(SWM2)	Motor2/Motor1	Outputs the motor changeover switch ON signal from motor 1 to motor 2.		A01 to A18
	(AX)	Auxiliary terminal (for 52-1)	Used for auxiliary circuit of 52-1. (Same function as AX1, AX2 terminal by FRENIC5000G9S series. (30kW or larger))	Refer to wiring diagram example.	
	(TU)	Time-up signal	Outputs time up signal (100ms ON pulse) at every stage end of PATTERN operation.		C21 to C28
	(TO)	Cycle completion signal	Outputs one cycle completion signal (100ms ON pulse) at PATTERN operation.		
	(STG1) (STG2) (STG4)	Stage No. indication 1 Stage No. indication 2 Stage No. indication 4	Outputs PATTERN operation's stage No. by signals STG1, STG2, and STG4.		
	(AL1) (AL2) (AL4) (AL8)	Alarm indication 1 Alarm indication 2 Alarm indication 4 Alarm indication 8	Outputs trip alarm No. by signals AL1, AL2, AL4, and AL8.		
	(FAN)	Fan operation signal	Outputs the inverter cooling fan operation status signal.	30kW or larger only.	H06
	(TRY)	Auto-resetting	Outputs ON signal at auto resetting mode. (Including "Reset interval")		H04, H05
	(U-DO)	Universal DO	Outputs command signal from main controller of LINK operation.		
	(OH)	Overheat early warning	Outputs ON signal when the temperature difference between the heat sink and the trip level is less than 10°C, and outputs OFF signal when the temperature difference is more than 15°C.		
	(SY)	Synchronization completion signal	Synchronization completion signal for synchronized operation.	Option	
	(LIFE)	Lifetime alarm	Outputs ON signal when the calculated lifetime is longer than preset alarm level.		
		2nd Freq. level detection	2nd-outputs ON signal by comparison of output frequency and preset value (FDT2 level).		
	· · · ·	2nd OL level early warning	2nd-outputs ON signal when the output current value is larger than preset alarm level (OL2 level).		
	(C10FF) (DNZS)	Terminal C1 off signal Speed existence signal	Outputs ON signal when the C1 current is smaller than 2mA. Outputs ON signal at detection of motor speed when using OPC-G11S-PG/PG2/SY.		
	СМЕ	Common (transistor	Common for transistor output signal.	JE	
	СМҮ	output)	Isolated from terminals CM and 11.	EN	
,	30A, 30B 30C	Alarm relay output	Outputs a contact signal when a protective function is activated.	Contact rating : 250V AC, 0.3A, cosø=0.3	F36
			Changeable exciting mode active or non-exciting mode active by function "F36".	48V DC, 0.5A, non-inductive	E24
	Y5A, Y5C	Relay output	Functions can be selected the same as Y1 to Y4.		
			Changeable exciting mode active or non-exciting mode active by function "E25".		E25
11000	DV. DY	D0405 1/0 1 1 1 1	Used for closing/opening a magnetic contactor connected to main power supply input.		<u> </u>
LINK	DX+, DX-, SD	RS485 I/O terminal	Connect to a personal computer or programmable logic controller (PLC). Up to 31 inverters can be connected when using daisy chain connection.		

Chapter 1

4. Terminal

4.1.2 FVR-E11S Series

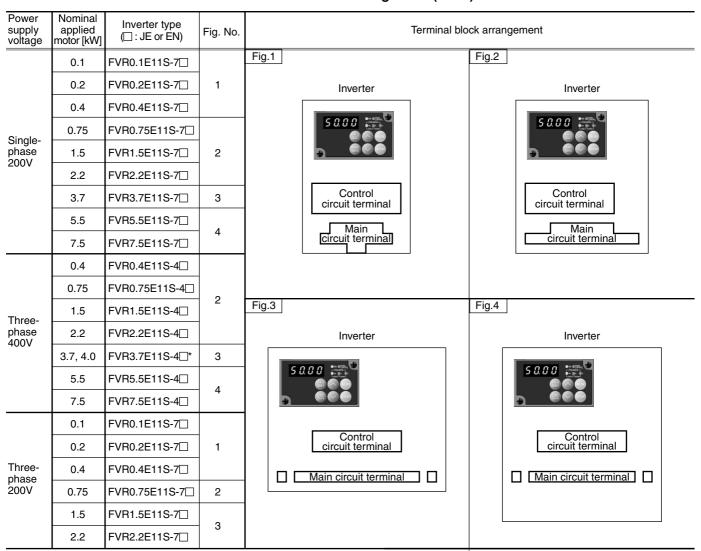
	Symbol	Terminal name	Function	Remarks	Func. cod
in cuit	L1/R, L2/S, L3/T	Power input	Connect a 3-phase power supply.		
	L1/L, L2/N	Power input	Connect a 1-phase power supply.		
	U, V, W	Inverter output	Connect a 3-phase induction motor.		
	P1, P(+)	For DC REACTOR	Connect the DC REACTOR for power-factor correcting or harmonic current reducing.	DC REACTOR: Option	
	P(+), N(-)	For DC link circuit	Used for DC bus connection system.		
	P(+), DB	For EXTERNAL BRAKING RESISTOR	Connect the EXTERNAL BRAKING RESISTOR (Option)		
	⊕ G	Grounding	Ground terminal for inverter chassis (housing).		
Analog input	13	Potentiometer power supply	+10V DC power supply for frequency setting POT (POT: 1 to $5k\Omega$)	Allowable maximum output current : 10mA	
	12	Voltage input	0 to +10V DC / 0 to 100% (0 to +5V DC / 0 to 100%) Reversible operation can be selected by function setting. 0 to ±10V DC / 0 to ±100% (0 to ±5V DC / 0 to ±100%)	Input impedance: 22kΩ Allowable maximum input voltage: ±15V DC If input voltage is 10 to 15V DC, the inverter estimates it to 10V DC.	F01, C
		(PID control)	Used for PID control reference signal or feedback signal.		F01, H
	C1	Current input	* 4 to 20mA DC / 0 to 100%	• Input impedance: 250Ω	F01
		(PID control)	Used for PID control reference signal or feedback signal.		F01, H
		(PTC-thermistor input)	The PTC-thermistor (for motor protection) can be connected to terminal C1 - 11.		H26, H
	11	Common	Common for analog signal	Isolated from terminal CME and CM.	1 .,
igital put	FWD	Forward operation command	FWD: ON The motor runs in the forward direction. FWD: OFF The motor decelerates and stops.	When FWD and REV are simultaneously ON, the motor decelerates and stops.	F02
	REV	Reverse operation command	REV: ON The motor runs in the reverse direction. REV: OFF The motor decelerates and stops.	The digital inputs can directly connent to source type output (PNP transistor output) circuit. (EN)	
	X1	Digital input 1	These terminals can be preset as follows.	ON state maximum input voltage: 2V	E01 to E
	X2	Digital input 2	·	(maximum source current : 5mA (JE) , 6mA (EN))	
	Х3	Digital input 3		OFF state maximum terminal voltage: 22 to 27V (allowable maximum leakage current: 0.5mA)	
	X4	Digital input 4		The digital inputs can directly connent to source type output (PNP transistor output) circuit. (EN)	
	X5	Digital input 5		output (PNP transistor output) circuit. (EN)	.
		Multistep freq. selection	(SS1) : 2 (0, 1) different frequencies are selectable. (SS1,SS2) : 4 (0 to 3) different frequencies are selectable. (SS1,SS2,SS4) : 8 (0 to 7) different frequencies are selectable. (SS1,SS2,SS4,SS8) : 16 (0 to 15) different frequencies are selectable.	Frequency 0 is set by F01 (or C30). (All signals of SS1 to SS8 are OFF)	C05 to C
	(RT1)	ACC / DEC time selection	(RT1) : 2 (0, 1) different ACC / DEC times are selectable.	Time 0 is set by F07/F08.	F07, F0 E10, E
	(HLD)	3-wire operation stop command	Used for 3-wire operation. (HLD): ON The inverter self-holds FWD or REV signal. (HLD): OFF The inverter releases self-holding.		
	(BX)	Coast-to-stop command	(BX): ON Motor will coast-to-stop. (No alarm signal will be output.)	The motor restarts from 0Hz by turning off BX with the operation command (FWD or REV) ON. Assigned to terminal X4 at factory setting.	H11
	(RST)	Alarm reset	(RST): ON Faults are reset. (This signal should be held for more than 0.1s.)	During normal operating, this signal is ignored. Assigned to X5 at factory setting.	
	(THR)	Trip command (External fault)	(THR): OFF "OH2 trip" occurs and motor will coast-to-stop.	This alarm signal is held internally.	
	(Hz2/Hz1)	Freq. set 2 / Freq. set 1	(Hz2/Hz1): ON Freq. set 2 is effective.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.	F01 / C
	(M2/M1)	Motor 2 / Motor 1	(M2/M1): ON The motor circuit parameter and V/f characteristics are changed to the second motor's ones.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.	P01 to P1 A10 to A1
	(DCBRK)	DC brake command	(DCBRK): ON The DC injection brake is effective. (In the inverter deceleration mode)	If the operation command(FWD/REV) is input while DC braking is effective, the operation command (FWD/REV) has priority.	F20 to F
	(TL2/TL1)	Torque limiter 2 / Torque limiter 1	(TL2/TL1): ON Torque limiter 2 is effective.		F40, F4 E16, E1
	(UP)	UP command	(UP): ON The output frequency increases.	When UP and DOWN commands are simultaneously	F01, C
	(DOWN)	DOWN command	(DOWN): ONThe output frequency decreases. The output frequency change rate is determined by ACC / DEC time. Restarting frequency can be selected from 0Hz or setting value at the time of stop.	ON, DOWN signal is effective.	
	(WE-KP)	Write enable for KEYPAD	(WE-KP): ON The data is changed by KEYPAD.	1	1
		PID control cancel	(Hz/PID): ONThe PID control is canceled, and frequency setting by KEYPAD (H20 to H
	(IVS)	Inverse mode changeover	(IVS): ON Inverse mode is effective in analog signal input.	If this signal is changed while the inverter is running, the signal is effective only after the inverter stops.	F01, C
	(LE)	Link enable (RS485, Bus)	(LE): ON The link opereation is effective. Used to switch operation between ordinary operation and link operation to communication.	RS485: Standard, Bus: Option	H30
	PLC	PLC terminal	Connect PLC power supply to avoid malfunction of the inverter that has SINK type digital input, when PLC power supply is off.	JE only	
	L		input, Wildin Lee power dupply to oil.	1	J

	Symbol	Terminal name	Function	Remarks	Func. code
Analog output	FM (11)	Analog monitor (Common)	Output voltage (0 to 10V DC) is proportional to selected function's value as follows. The proportional coefficient and bias value can be preset. Output frequency 1 (Before slip compensation) (0 to max. frequency) Output frequency 2 (After slip compensation) (0 to 200%) Output ourrent (0 to 200%) Output voltage (0 to 200%) Output torque (0 to 200%) Load factor (0 to 200%) Input power (0 to 200%) PID feedback value (0 to 100%) DC link circuit voltage (0 to 100%)	Allowable maximum output current: 2mA	F30, F31
Pulse output	FM (11)	Pulse rate monitor (Common)	Pulse rate mode: Pulse rate is proportional to selected function's value* (50% duty pulse) Average voltage mode: Average voltage is proportional to selected function's value* (2670p/s pulse width control) Kinds of function to be output is same as those of analog output (FM).	Allowable maximum output current : 2mA	F33 to F35
Transistor output	P24	DC voltage supply	Power supply for transistor output load. (+24V DC, 50mA max.)	Link P24 to CMC and connect loads such as relays between Y1E, Y2E and CM. (EN)	
	Y1 Y2	Transistor output 1 Transistor output 2	Output the selected signals from the following items.	ON state maximum output voltage : 2V (Allowable maximum sink current : 50mA) OFF state maximum leakage current : 0.1mA (Allowable maximum voltage : 27V)	E20, E21
	(RUN)	Inverter running	Outputs ON signal when the output frequency is higher than starting frequency.		[
	(FAR)	Frequency equivalence signal	Outputs ON signal when the difference between output frequency and setting frequency is smaller than FAR hysteresis width.		E30
	(FDT)	Frequency level detection	Outputs ON signal by comparison of output frequency and preset value (level and hysteresis).		E31, E32
	(LU)	Undervoltage detection signal	Outputs ON signal when the inverter stops by undervoltage while the operation command is ON.		
	(B/D)	Torque polarity	Outputs ON signal in braking or stopping mode, and OFF signal in driving mode.		
	(TL)	Torque limiting	Outputs ON signal when the inverter is in torque-limiting mode.		ļ
	(IPF)	Auto-restarting	Outputs ON signal during auto restart operation (Instantaneous power failure) mode. (including "restart time")		ļ
	(OL)	Overload early warning	Outputs ON signal when the electronic thermal value is higher than preset alarm level. Outputs ON signal when the output current value is higher than preset alarm level.		E33 to E35
	CME	Common (transistor	Common for transistor output signal. Isolated from terminals CM and 11.	JE	
	СМС	output)		EN	
Relay	30A, 30B	Alarm relay output	Outputs a contact signal when a protective function is activated.	Contact rating :	F36
output	30C		Changeable exciting mode active or non-exciting mode active by function "F36".	250V AC, 0.3A, cosø=0.3 48V DC, 0.5A, non-inductive (for LVD) 42V DC, 0.5A, non-inductive (for UL/cUL)	
LINK		RS485 I/O terminal	Connect the RS485 link signal.		

4. Terminal

4.2 Main circuit and control circuit terminals

4.2.1 Terminal block arrangement 4.2.1.1 FRENIC5000G11S/P11S Series


Table 1-1 Terminal block arrangement (G11S/P11S)

Power	Nominal	G11S serie	es	P11S series	3		
supply voltage	applied motor [kW]	Inverter type (□ : JE or EN)	Fig. No.	Inverter type	Fig. No.	Terminal block	arrangement
	0.2	FRN0.2G11S-2JE				Fig.1	Fig.2
	0.4	FRN0.4G11S-2JE	1			<u> </u>	Inverter
	0.75	FRN0.75G11S-2JE				Inverter	
	1.5	FRN1.5G11S-2JE	1	_	_	[:]	
	2.2	FRN2.2G11S-2JE	1				Control
	3.7	FRN3.7G11S-2JE	1			Control	terminal
	5.5	FRN5.5G11S-2JE		FRN5.5P11S-2JE		circuit terminal	i I I I I I I I I I I I I I I I I I I I
	7.5	FRN7.5G11S-2JE	1	FRN7.5P11S-2JE		RO	
Three- phase	11	FRN11G11S-2JE	1	FRN11P11S-2JE	_	ТО	Main circuit terminal
200V	15	FRN15G11S-2JE	2	FRN15P11S-2JE	2	Main circuit terminal	Main silvan tollinia.
	18.5	FRN18.5G11S-2JE		FRN18.5P11S-2JE			
	22	FRN22G11S-2JE	1	FRN22P11S-2JE		Fig.3	Fig.4
	30	FRN30G11S-2JE	3	FRN30P11S-2JE	_	Inverter	Inverter
	37	FRN37G11S-2JE		FRN37P11S-2JE	3		
	45	FRN45G11S-2JE	4	FRN45P11S-2JE			
	55	FRN55G11S-2JE	1	FRN55P11S-2JE	4	Control	Control
	75	FRN75G11S-2JE	5	FRN75P11S-2JE		circuit terminal	circuit terminal
	90	FRN90G11S-2JE	7	FRN90P11S-2JE	5		
	110	_	_	FRN110P11S-2JE	7		
	0.4	FRN0.4G11S-4□				ROITO	ROITO
	0.75	FRN0.75G11S-4	1			Main circuit terminal	Main circuit terminal
	1.5	FRN1.5G11S-4	1	_	_		
	2.2	FRN2.2G11S-4	1			Fig.5 , .	Fig.6 Invertor
	3.7, 4.0	FRN3.7G11S-4[*1]				Inverter	Inverter
	5.5	FRN5.5G11S-4□		FRN5.5P11S-4JE	2		
	7.5	FRN7.5G11S-4□	1	FRN7.5P11S-4JE			
	11	FRN11G11S-4□	2	FRN11P11S-4JE		Control	Control circuit
	15	FRN15G11S-4□		FRN15P11S-4JE		terminal	terminal
	18.5	FRN18.5G11S-4	1	FRN18.5P11S-4JE			
	22	FRN22G11S-4□	1	FRN22P11S-4JE			
Three-	30	FRN30G11S-4□*2)		FRN30P11S-4JE			ROITO
phase 400V	37	FRN37G11S-4□	1	FRN37P11S-4JE		Main circuit terminal	Main circuit terminal
1001	45	FRN45G11S-4□	3	FRN45P11S-4JE	3		· · · · · · · · · · · · · · · · · · ·
	55	FRN55G11S-4□	1	FRN55P11S-4JE		Fig.7	
	75	FRN75G11S-4□		FRN75P11S-4JE			
	90	FRN90G11S-4□	4	FRN90P11S-4JE		Inve	erter
	110	FRN110G11S-4□]	FRN110P11S-4JE	4		
	132	FRN132G11S-4□	- 6	FRN132P11S-4JE			<u></u>
	160	FRN160G11S-4□		FRN160P11S-4JE	6		Control
	200	FRN200G11S-4□		FRN200P11S-4JE	U		Control circuit
	220	FRN220G11S-4□]	FRN220P11S-4JE			terminal
	280	FRN280G11S-4	7	FRN280P11S-4JE			
	315	FRN315G11S-4□]	FRN315P11S-4JE			
	355	FRN355G11S-4JE]	FRN355P11S-4JE	7	R0 T0 Main circu	uit terminal
	400	FRN400G11S-4□		FRN400P11S-4JE			
	450	ı		FRN450P11S-4JE			
	500	_	1 -	FRN500P11S-4JE			

NOTES: *1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN
*2) JE FRN30G11S-4JE EN FRN30G11S-4EN or FRN30G11S-4EV
R0 and T0 are not provided with inverters of 0.75kW or smaller.

4.2.1.2 FVR-E11S Series

Table 1-2 Terminal arrangement (E11S)

NOTE: *JE FVR3.7E11S-4JE EN FVR4.0E11S-4EN

4. Terminal

4.2.2 Main circuit terminal

4.2.2.1 FRENIC5000G11S/P11S Series

■ Main circuit terminal arrangement

(a) Three-phase 200V series

Table 1-2 (a) Main circuit terminal arrangement (G11S/P11S)

Power	Nominal	G11S serie	es	P11S series	3	
supply voltage	applied motor [kW]	Inverter type	Fig. No.	Inverter type	Fig. No.	Terminal arrangement
	0.2 0.4 0.75	FRN0.2G11S-2JE FRN0.4G11S-2JE FRN0.75G11S-2JE	1			Fig.1
	1.5	FRN1.5G11S-2JE		-	_	⊕ G
	2.2	FRN2.2G11S-2JE	2, 10			Fig.0
	3.7	FRN3.7G11S-2JE				Fig.2
	5.5	FRN5.5G11S-2JE	3, 11	FRN5.5P11S-2JE		⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
	7.5	FRN7.5G11S-2JE	3, 11	FRN7.5P11S-2JE	3, 11	
Three- phase 200V	11	FRN11G11S-2JE		FRN11P11S-2JE		
	15	FRN15G11S-2JE	4, 11	FRN15P11S-2JE	4, 11	Fig.3
	18.5	FRN18.5G11S-2JE		FRN18.5P11S-2JE		
	22	FRN22G11S-2JE		FRN22P11S-2JE		G ⊕ G ⊕ G
	30	FRN30G11S-2JE		FRN30P11S-2JE		⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ₩ U V W
	37	FRN37G11S-2JE	5, 11	FRN37P11S-2JE		
	45	FRN45G11S-2JE	3, 11	FRN45P11S-2JE	5, 11	Fig.4
	55	FRN55G11S-2JE		FRN55P11S-2JE		⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ U V W
	75	FRN75G11S-2JE	6, 11	FRN75P11S-2JE		⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
	90	FRN90G11S-2JE	7, 11	FRN90P11S-2JE	6, 11	
	110	-	_	FRN110P11S-2JE	7, 11	

NOTE: See Table 1-2 (b) for Fig.5 and later.

(b) Three-phase 400V series

Table 1-2 (b) Main circuit terminal arrangement (G11S/P11S)

Dower	ower Nominal G11S series P		P11S series		, , , , , , , , , , , , , , , , , , ,				
supply	applied	Inverter type	Fig. No.	Inverter type	Fig. No.	Terminal arrangement			
voltage	motor [kW]	(□: JE or EN)	rig. No.	inverter type	rig. No.	Fig.5			
	0.4	FRN0.4G11S-4□	1						
	0.75	FRN0.75G11S-4□				⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ₩ ⊕ N(−)			
	1.5	FRN1.5G11S-4□		-	_	• •			
	2.2	FRN2.2G11S-4□	2, 10			⊕ G ⊕ G Fig.6			
	3.7, 4.0	FRN3.7G11S-4□*1				$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	5.5	FRN5.5G11S-4□	3,11	FRN5.5P11S-4JE					
	7.5	FRN7.5G11S-4□	0,11	FRN7.5P11S-4JE	3, 11	⊕ ⊕ ⊕ G ⊕ G			
	11	FRN11G11S-4□		FRN11P11S-4JE		Fig.7			
	15	FRN15G11S-4□	4, 11	FRN15P11S-4JE		⊕ ⊕ ⊕ ⊕ ⊕ ₩ L1/R L2/S L3/T U V W			
	18.5	FRN18.5G11S-4□	7, 11	FRN18.5P11S-4JE	4, 11	P1 P(+) N(-)			
	22	FRN22G11S-4□		FRN22P11S-4JE		• •			
	30	FRN30G11S-4□*2)		FRN30P11S-4JE		⊕ G ⊕ G			
Three-phase	37	FRN37G11S-4□		FRN37P11S-4JE		Fig.8			
	45	FRN45G11S-4□		FRN45P11S-4JE		0			
400V	55	FRN55G11S-4□	5, 11	FRN55P11S-4JE	5, 11	⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ H⊕ H⊕ H⊕ H⊕ H⊕ H⊕ H⊕ H⊕ H⊕			
	75	FRN75G11S-4□		FRN75P11S-4JE	0, 11				
	90	FRN90G11S-4□		FRN90P11S-4JE		Fig.9			
	110	FRN110G11S-4		FRN110P11S-4JE					
	132	FRN132G11S-4		FRN132P11S-4JE					
	160	FRN160G11S-4□	7, 11	FRN160P11S-4JE		⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ₩ U V W			
	200	FRN200G11S-4□	,,,,	FRN200P11S-4JE	7, 11	⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ U ∪ V W			
	220	FRN220G11S-4		FRN220P11S-4JE	7, 11	•			
	280	FRN280G11S-4□	8, 12	FRN280P11S-4JE		⊕ G ⊕ G			
	315	FRN315G11S-4	0, 12	FRN315P11S-4JE					
	355	FRN355G11S-4JE	9, 12	FRN355P11S-4JE	8, 12				
	400	FRN400G11S-4	0, 12	FRN400P11S-4JE					
	450	-	_	FRN450P11S-4JE	9, 12	R0			
	500	_		FRN500P11S-4JE	J ,				

NOTES: See Table 1-2 (a) for Fig. 1 to Fig. 4.

*1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

*2) JE FRN30G11S-4JE EN FRN30G11S-4EN or FRN30G11S-4EV

4. Terminal

■ Main circuit terminal size

Table 1-3 Main circuit terminal size (G11S/P11S)

## Supplied #	Power	Nominal	Inverter type		Terminal s	size			Inverter type		Terminal	size		
O.2 FRND.2G115.2JE M3.5 FRNS.5P115.2JE M5 M5 M5 M5 M5 M5 M5 M	supply	applied	G11S series	L1/R, L2/S. L3/T	P1,P (+)	DB	⊕ G	R0,T0	P11S series	L1/R, L2/S. L3/T	P1,P (+)	DB	⊕ G	R0,T0
	voltage	motor [kW]	(☐ : JE or EN)	U, V, W	N (-)			*1)		U, V, W	N (-)			*1)
1.5		0.2	FRN0.2G11S-2JE											•
1.8		0.4	FRN0.4G11S-2JE	M3.5	M3.5	M3.5	M3.5	-						
2.2 FRN2.2G115.2LE		0.75	FRN0.75G11S-2JE						-		-			
3.7 FRNS.7611S-2JE M5 M5 M5 M5 M5 M5 M5 M		1.5	FRN1.5G11S-2JE											
5.5 FRNS.5G11S-2JE M5 M5 M5 M5 M3.5 FRNS.5P11S-2JE M5 M5 M5 M3.5 M3.5 FRNS.5P11S-2JE M6 M6 M6 M6 M6 M8.5 FRNS.5P11S-2JE M8 M8 M8 M8 M8 FRNS.5P11S-2JE M8 M8 M8 M8 M8 FRNS.5P11S-2JE M10		2.2	FRN2.2G11S-2JE	M4	M4	M4	M4	M3.5						
Three-phase		3.7	FRN3.7G11S-2JE											
Three-phase		5.5	FRN5.5G11S-2JE	M5	M5	MS	ME	M3.5	FRN5.5P11S-2JE					
15		7.5	FRN7.5G11S-2JE	IVIO	IVIO	IVIO	IVIO	IVIO.5	FRN7.5P11S-2JE	M5	M5	M5	M5	M3.5
15		11	FRN11G11S-2JE						FRN11P11S-2JE					
18.5		15	FRN15G11S-2JE	M6	M6		M6	M3.5						
30		18.5	FRN18.5G11S-2JE		1410		""		FRN18.5P11S-2JE	M6	M6	M6	M6	M3.5
37 FRN37G11S-2JE M10 M10 M10 M10 FRN37F11S-2JE M10 M10 M10 FRN3F11S-2JE FRN4FSF11S-2JE FRN4FSF11S-2JE FRN4FSF11S-2JE M10 M		22	FRN22G11S-2JE						FRN22P11S-2JE					
A				M8	M8					M8	M8			
45 FRNASC11S-2JE M10 M10 FRNASP11S-2JE FRNASP11S-2JE FRNASP11S-2JE FRNSSP11S-2JE FRNSSP11S-2JE M10			FRN37G11S-2JE			-	M8	M4						
75				M10	M10								M8	M4
90 FRN90G11S-2JE			FRN55G11S-2JE						FRN55P11S-2JE	M10	M10	-		
90 FRN90G115-2JE				M12	M12		M10	M4						
110			FRN90G11S-2JE							M12	M12		M10	M4
0.75			-	_	_				FRN110P11S-2JE					
1.5				M3.5	M3.5	M3.5	M3.5	_						
2.2 FRN2_2G11S-4 M4 M4 M4 M3.5 3.7, 4.0 FRN3.7G11S-4 M5 M5 M5 M5 M5 FRN5.5P11S-4JE FRN7.5P11S-4JE FRN7.5P1														
3.7, 4.0 FRN3.7G11S-4						١	١	 	_		_			
5.5				1	M4	M4	M4	M3.5						
Three-phase 400V			, , , , , , , , , , , , , , , , , , ,						EDNE ED440 4 IE				I	_
11				M5	M5	M5	M5	M3.5		ME	N/5	145	M5	M3 5
15										IVIS	IVI5	IVI5	IVI5	IVI3.5
18.5 FRN18.5G11S-4 M6 M6 M6 M6 M6 M6 M6					M6		M6	M3.5						
22 FRN22G11S-4 30 FRN30G11S-4 37 FRN37G11S-4 45 FRN45G11S-4 45 FRN55G11S-4 45 FRN55G				M6						Me	M6 M6	Me	l Me	M3.5
Three-phase 400V										IVIO		IVIO	IVIO	
Three-phase 400V														
Note	Three-			1	Ma									
The first of the				IVIO	IVIO					MΩ	MΩ			
T5	400V			1			M8	M4	 	IVIO	IVIO			
90 FRN90G11S-4 M10 M10 FRN110G11S-4 M10 M10 FRN110G11S-4 M10 M10 FRN110G11S-4 M10 M10 FRN110G11S-4 M10 M10 M10 FRN110G11S-4 M10 M10 M10 M10 FRN160G11S-4 M10							""	''''					M8	M4
110				M10	M10							_		
132 FRN132G11S-4				1						M10	M10			
160 FRN160G11S-4 200 FRN200G11S-4 220 FRN220G11S-4 280 FRN280G11S-4 315 FRN315G11S-4 355 FRN355G11S-4JE 400 FRN400G11S-4 450 - H12 H12 H12 H12 H12 H13 FRN160P11S-4JE FRN20P11S-4JE FRN220P11S-4JE FRN280P11S-4JE FRN315P11S-4JE FRN355P11S-4JE FRN355P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN450P11S-4JE FRN450P11S-4JE			_											
200 FRN200G11S-4 220 FRN220G11S-4 280 FRN280G11S-4 315 FRN315G11S-4JE 335 FRN355G11S-4JE 400 FRN400G11S-4JE 450 - FRN400P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN400P11S-4JE									 					
220 FRN220G11S-4 280 FRN280G11S-4 315 FRN315G11S-4 355 FRN355G11S-4JE 400 FRN400G11S-4 450 - 100 M12 M12 M12 M12 FRN220P11S-4JE FRN315P11S-4JE FRN315P11S-4JE FRN355P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN450P11S-4JE FRN450P11S-4JE														
280 FRN280G11S-4 315 FRN315G11S-4 355 FRN355G11S-4JE 400 FRN400G11S-4 450 - M12 M12 M10 M4 FRN280P11S-4JE FRN315P11S-4JE FRN355P11S-4JE FRN400P11S-4JE FRN400P11S-4JE FRN450P11S-4JE				l										
315 FRN315G11S-4□				M12	M12		M10	M4		JE M12				
355 FRN355G11S-4JE 400 FRN400G11S-4□ FRN400P11S-4JE 450 − FRN450P11S-4JE		315									M12		M10	M4
400 FRN400G11S-4☐ FRN400P11S-4JE FRN450P11S-4JE				1									IVITO	
450 – FRN450P11S-4JE	-			1										
 						•		•						
, , , , , , , , , , , , , , , , , ,		500	_	1	_				FRN500P11S-4JE					

NOTES: *1) Provided as standard for 1.5kW or larger inverter. (Not available for 0.75kW or smaller inverter)

*2) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

*3) JE FRN30G11S-4JE EN FRN30G11S-4EV

4.2.2.2 FVR-E11S Series

■ Main circuit terminal arrangement

(a) Three-phase 400V/200V

Table 1-4 (a) Main circuit terminal (E11S)

Power supply voltage	Nominal applied motor [kW]	Inverter type (□: JE or EN)	Fig. No.	Terminal block arrangement	Terminal size
	0.1	FVR0.1E11S-2JE		Fig.1	
	0.2	FVR0.2E11S-2JE	1	⊕ ⊕ ⊕ ⊕ ⊕ ⊕	M3.5
	0.4	FVR0.4E11S-2JE	·	⊕ ⊕ ⊕ ⊕ ⊕ ₩ U W W	
Three-	0.75	FVR0.75E11S-2JE		⇔ G ⊕ ⊕ G	
phase 200V	1.5	FVR1.5E11S-2JE	2		
	2.2	FVR2.2E11S-2JE		Fig.2	
	3.7	FVR3.7E11S-2JE			
	5.5	FVR5.5E11S-2JE	3	⊕ G ⊕ ⊕ ⊕ ⊕ ⊕ G ⊕ G	M4
	7.5	FVR7.5E11S-2JE		⊕ ⊕ ⊕ ⊕ ₩ V W	
	0.4	FVR0.4E11S-4□			
	0.75	FVR0.75E11S-4	2	Fig.3	
Thus	1.5	FVR1.5E11S-4□		· · · · · · · · · · · · · · · · · · ·	
Three- phase 400V	2.2	FVR2.2E11S-4□		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
700 \$	3.7, 4.0	FVR0.4E11S-4□*	3	⊕ G ⊕	M5
	5.5	FVR5.5E11S-4□			
	7.5	FVR7.5E11S-4□			

NOTE: *JE FVR3.7E11S-4JE EN FVR4.0E11S-4EN

(b) Single-phase 200V

Table 1-4 (b) Main circuit terminal (E11S)

Power supply voltage	Nominal applied motor [kW]	Inverter type (□ : JE or EN)	Fig. No.	Terminal block arrangement	Terminal size
	0.1	FVR0.1E11S-7□		Fig.1	
Three- phase 200V	0.2	FVR0.2E11S-7□	1		M3.5
	0.4	FVR0.4E11S-7□		⊕ G ⊕ ⊕ ⊕ G Fig.2	
	0.75	FVR0.75E11S-7	2		M4
	1.5	FVR1.5E11S-7□	3	Fig.3 \$\begin{array}{c ccccccccccccccccccccccccccccccccccc	
	2.2	FVR2.2E11S-7□		⊕ G ⊕ G	M5

4. Terminal

4.2.3 Control circuit terminal

4.2.3.1 FRENIC5000G11S/P11S Series

■ Control circuit terminal size and arrangement

Table 1-5 Control circuit terminal size and arrangement

Nominal applied		ter type		Control circuit tern	ninal
motor [kW]	G11S series (□: JE or EN)	P11S series	Screw size	Terminal a	rrangement
0.2	FRN0.2G11S-2JE		МЗ		
0.4	FRN0.4G11S-2JE				
0.4	FRN0.4G11S-4□				
0.75	FRN0.75G11S-2JE			JE	EN
0.75	FRN0.75G11S-4□	_			
1.5	FRN1.5G11S-2JE				
1.5	FRN1.5G11S-4□				
2.2	FRN2.2G11S-2JE			30A	30C
2.2	FRN2.2G11S-4□	_		30C	30A
3.7, 4.0	FRN3.7G11S-2JE			30B	30B
3.7, 4.0	FRN3.7G11S-4□*1)		_	Y5C Y5A	Y5C Y5A
E	FRN5.5G11S-2JE	FRN5.5P11S-2JE		Y4 15A	CMY
5.5	FRN5.5G11S-4□	FRN5.5P11S-4JE		Y3	Y4 CIVIT
7.5	FRN7.5G11S-2JE	FRN7.5P11S-2JE	_	Y2 10	Y3
7.5	FRN7.5G11S-4□	FRN7.5P11S-4JE	_	Y1	Y2
	FRN11G11S-2JE	FRN11P11S-2JE	_	CME	 Y1
11	FRN11G11S-4□	FRN11P11S-4JE		C1	11
45	FRN15G11S-2JE	FRN15P11S-2JE		11	C1
15	FRN15G11S-4□	FRN15P11S-4JE		FMA	12
40.5	FRN18.5G11S-2JE	FRN18.5P11S-2JE		12	FMA I
18.5	FRN18.5G11S-4□	FRN18.5P11S-4JE]	13 FMP	13 FMP
00	FRN22G11S-2JE	FRN22P11S-2JE		PLC	V2 FIVIE
22	FRN22G11S-4□	FRN22P11S-4JE		CM LI	PLC
30	FRN30G11S-2JE	FRN30P11S-2JE		X1	I См I———
30	FRN30G11S-4□*2)	FRN30P11S-4JE		FWD 	
07	FRN37G11S-2JE	FRN37P11S-2JE		X2	CM
37	FRN37G11S-4□	FRN37P11S-4JE		∥ REV ⊩──	X2
45	FRN45G11S-2JE	FRN45P11S-2JE		X3	FWD W
45	FRN45G11S-4□	FRN45P11S-4JE		CM	X3
<i></i>	FRN55G11S-2JE	FRN55P11S-2JE		X7 X4	REV X4
55	FRN55G11S-4□	FRN55P11S-4JE	_	X5 X5	P24 A4
75	FRN75G11S-2JE	FRN75P11S-2JE	_	X8	X5
75	FRN75G11S-4□	FRN75P11S-4JE	_	X6	
	FRN90G11S-2JE	FRN90P11S-2JE	_	X9 10	X6
90	FRN90G11S-4□	FRN90P11S-4JE			DX-
110	_	FRN110P11S-2JE	_	DX-	X7
110	FRN110G11S-4□	FRN110P11S-4JE			DX+ X8
132	FRN132G11S-4□	FRN132P11S-4JE	_	DX+	
160	FRN160G11S-4□	FRN160P11S-4JE		SD	SD X9
200	FRN200G11S-4□	FRN200P11S-4JE	_		
220	FRN220G11S-4□	FRN220P11S-4JE	_	_	
280	FRN280G11S-4□	FRN280P11S-4JE	_		
315	FRN315G11S-4□	FRN315P11S-4JE			
355	FRN355G11S-4JE	FRN355P11S-4JE			
400	FRN400G11S-4□	FRN400P11S-4JE			
450		FRN450P11S-4JE			
500	_	FRN500P11S-4JE			

NOTES: *1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN EN FRN30G11S-4EV

4.2.3.2 FVR-E11S Series ■ Terminal arrangement

;	30A	30B	Y1	C1	1	FM	X1	X2	,	хз	X4	X5	PLC	
	30C	; Y2	СМ	E	11	12	13	CM	1	FWD	RE\	/ CM	P24	1

■ Terminal size M2.5:Common for all models

Contents

1. Frequency Control Operation	
1.1 Types of frequency control signal	
1.2 Accuracy and resolution	2-3
2. KEYPAD Panel	2-4
2.1 FRENIC5000G11S/P11S series	
2.2 FVR-E11S series	
3. Function Explanation	
3.1 Fundamental Functions	
3.2 Extension Terminal Functions	
3.3 Control Functions of Frequency	
3.4 Motor Parameters	
3.5 High Performance Functions	
3.6 Alternative Motor Parameters	2-44
4. Standard RS485 Interface	2-46
4.1 Outline	2-47
4.1.1 Features	2-47
4.1.2 Function overview	2-47
4.2 Transmission specification	2-47
4.3 Connection	2-47
4.3.1 Connection method	2-47
4.3.2 RS485	2-48
4.3.3 Example of connection	
4.3.4 Example of noise prevention	
4.4 Transmission method	
4.4.1 Transmission frame	
4.4.2 Field description	
4.4.3 Procedure on the host side	
4.4.4 Example of communication	
4.4.5 Communication error	
4.5 Functions specific for communication	
4.5.1 Command data	
4.5.2 Operation command data	
4.5.3 Function data	
4.5.4 Monitoring data	
4.6 Function data format	
4.6.1 List of function data format	
4.6.2 Data format specification	
4.7 Changeover of communications	
4.7.2 Link function (operation selection)	
4.8 Response time	
4.8.1 Response interval time	
4.8.2 Time of receiving preparation completion	
4.9 Function	
4.10 Troubleshooting	
4.11 Appendix	
4.11.1 Communication level converter	
4.11.2 ASCII code list	
4.11.3 Example of a control program	
·	
5. Using Lifetime Forecast Functions	
5.1 Contents of lifetime forecast functions	
5.2 How to check lifetime forecast information	
5.3 Measuring conditions of lifetime	2-78

1.Frequency Control Operation

Frequency Control Operation
 Types of frequency control signal
 types of frequency setting method are available as shown on Table 2-1.

Table 2-1 List of Frequency setting method

No.	Frequency setting method	Description	Related Fun	c. Code
			G11S, P11S	E11S
1	KEYPAD operation (• While the key is pressed, the output frequency increases and while the key is pressed, it decreases.	F01	
2	External potentiometer	 Connect a potentiometer (1 to 5kΩ) with three terminals to the terminals 13, 12, and 11 to perform frequency control. At that time, +10Vdc is applied between terminals 13 and 11. Therefore, use a potentiometer of 1 to 5k. (The maximum allowable current between terminals is 10mA) Potentiometer is sold separately. 	F01	
3	0 to +10V voltage input	• Input a 0 to +10Vdc signal between the terminals 12 and 11 (or V2 and 11) to perform frequency control. (Input impedance = $22k\Omega$) (V2: EN only)	F01	
4	0 to +5V voltage input	 By setting Function code F17 (Gain for frequency setting signal) at 200.0%, 0 to 5Vdc signal can be used for frequency setting. Input a 0 to +5Vdc signal between the terminals 12 and 11 to perform frequency control. (Input impedance = 22kΩ) 	F01	
5	4 to 20mA current input	• Input a 4 to 20mAdc current signal between the terminals C1 and 11 to perform frequency control. (Input impedance = 250Ω)	F01	
6	Voltage input + current input	Use an added signal of voltage signal of 0 to 10Vdc (between terminals 12 and 11) + current signal of 4 to 20mAdc (between terminals C1 and 11) to perform frequency control.	F01	
7	0 to ±10V voltage input	Invert the polarity of the DC voltage signal, in addition to the control of item 3 above, to change the rotating direction.	F01	
8	+10 to 0V voltage input	• Input a +10 to 0Vdc voltage signal between the terminals 12 and 11 (or V2 and 11) to perform frequency control in inverse mode.(Input impedance = 22k), (+10 to 0V / 0Hz to Max. freq.)	F01	
9	20 to 4mA current input	Input a 20 to 4mAdc current signal between the terminals C1 and 11 to perform frequency control in inverse mode.(Input impedance = 250), (20 to 4mA / 0Hz to Max. freq.)	F01	
10	UP/DOWN control	 Set UP/DOWN control to the terminal function of digital input terminal. Output frequency increases while UP terminal is on; it decreases while DOWN terminal is on. Output frequency at starting can be selected from either 0Hz or the value last set before stopping. 	F01 E01 to E09	F01 E01 to E05
11	Multistep speed operation	15 kinds of output frequency can be stored in the inverter. Each output frequency can be selected by external signals (assigned to terminals X1 to X9) to perform multistep (max. 16) speed operation.	F01 E01 to E09	F01 E01 to E05
12	Jogging operation	 Jogging operation can be set by KEYPAD panel or external signal input. 	F02 E01 to E09	
13	Pattern operation	An automatic timer operation can be performed according to the preset max. 7 stages. External setting from PLC is not required.	F01 C21 to C28	_
14	D/I or pulse train	 Highly precise speed control can be performed with 16-bit parallel signal using an option card (OPC-G11S-DIO). Either 16-bit binary signal or BCD 4-digit signal can be selected. Speed control with pulse train input can be performed using an option card (OPC-G11S-PG_). 	F01	-
		Using an option card (OPC-G11S-PG_). Using an option card (OPC-G11S-SY) enables the position control with pulse train input and the synchronous operation between two motors (simultaneous-start-and-synchronization, proportional synchronization).		

1. Frequency Control Operation

No.	Frequency setting method	Description	Related Func.	Code
			G11S, P11S	E11S
15	RS485 communication	Frequency setting can be made by means of communication with RS485 as standard.	H30 to H39	
16	PID control	Optimum control is enabled, by controlling feedback signal in air- conditioning unit.	H20 to H25	
17	T-link	 Highly precise speed control can be performed with 16-bit serial signal by connecting FUJI PLC "MICREX-F" via an option card (OPC-G11S-TL). 	F01, H30	_
18	LINK operation	 Using the option cads (OPC-G11S-		

^{*} In G11S series, output frequency can be selected out of 2 preset frequency signals by using external signal input (Function select of terminal X1

1.2 Accuracy and resolution

Accuracy and resolution depend on the frequency setting type as follows:

Table 2-2 Accuracy of frequency setting

Type of setting	Accuracy	Remarks
Analog setting	±0.2% of Maximum frequency	25 ± 10°C
Digital setting	±0.01% of Maximum frequency	-10 to +50°C

Table 2-3 Resolution of frequency setting

Type of setting	Resolution	Remarks
Analog setting	1/3000 of Maximum frequency	
KEYPAD panel setting	0.01Hz at 99.99Hz or lower 0.1Hz at 100.0Hz or higher	
LINK setting	1/20000 of Maximum frequency or 0.01Hz (Fixed)	Either one can be selected.

2. KEYPAD Panel

2. KEYPAD panel

2.1 FRENIC5000G11S/P11S series

LED monitor

In operation mode:

Displays the setting frequency, output current, voltage, motor speed, or line speed.

In trip mode:

Displays code indicating the cause of trip.

Up/Down keys
In operation mode :

Increases or decreases the frequency or speed.

In program mode:

Increases or decreases function code number and data set value.

Program key

Switches the display to a menu screen or to the initial screen for operation mode or alarm mode.

Shift key (Column shift)

In program mode:

Moves the cursor horizontally at data change. Pressing this key with the UP or DOWN key, the screen changes to the next function block.

Reset key

In program mode:

Cancels the current input data and shifts the screen.

In trip mode:

Releases the trip-stop state.

LCD monitor

In operation mode:
Displays various items of information such as operation condition and function data.
Operation guidance, which can be scrolled, is displayed

In program mode:

at the bottom.

Displays functions and data.

Unit indication

Displays the unit for the information shown on the LED monitor.

FWD/REV keys

In operation mode : Starts the inverter with

forward or reverse operation command.

Pressing the FWD or REV key lights the RUN lamp. Invalid when the function code F02 (Operation method) is set at 1 (External signal operation).

Stop key

In operation mode:
Stops the inverter.
Invalid when the function code
F02 (Operation method) is set
at 1 (External signal
operation).

Function/Data Select key

In operation mode:
Changes the displayed values of LED monitor.
In program mode:
Selects the function code or stores the data.

■ KEYPAD panel Operation

Perform the wiring shown in the Basic wiring diagram in Section 3.2, Chapter 1. Turn on inverter power, and use the key to set an output frequency. Press the key, then press the work key.

The inverter starts running using the factory setting function data.

Press the STOP key to stop the inverter.

• Procedure for selecting function codes and data codes

The following is a sample procedure for selecting a function code and changing the function data.

1 Press the PRG key to switch the operation monitor screen to the program menu screen.

RUN FWD PRG \rightarrow PRG MENU F/D \rightarrow LED SHIFT

2 Select "1. DATA SET", and press the DATA key.

- → 1. DATA SET
 2. DATA CHECK
 3. OPR MNTR
 4. I / O CHECK
- 3 Press the or v key to select a target function code. To quickly scroll the function select screen, press key and the or key at the same time. At the target function, press the
- F00 DATA PRTC F01 FREQ CMD 1 F02 OPR METHOD F03 MAX Hz-1
- 4 Use the , , , and shift keys to change the function data to the target value. (Use the shift key to move the cursor when you want to enter a numerical value.)
- F01 FREQ CMD 1 0 0 ~ 11
- 5 Press the Key to store the updated function data in memory. The screen shifts for the selection of the next function.
- F02 OPR METHOD F03 MAX Hz-1 F04 BASE Hz-1 F05 RATED V-1
- 6 Pressing the PRG key switches the screen to the operation monitor screen.

RUN FWD PRG \rightarrow PRG MENU F/D \rightarrow LED SHIFT

1) Setting a frequency

When the operation monitor screen is displayed, a frequency can be set by using the operation and stop modes. When the target frequency is displayed, press the parallel key to enter the frequency in memory.

2) Switching a unit indication

During both operation and stop modes, each time the the key is pressed, the value displayed on the LED monitor changes, and the unit indication on the LCD monitor shifts from Hz to A, V, r/min, m/min, kW, and % in this order in accordance with the displayed value.

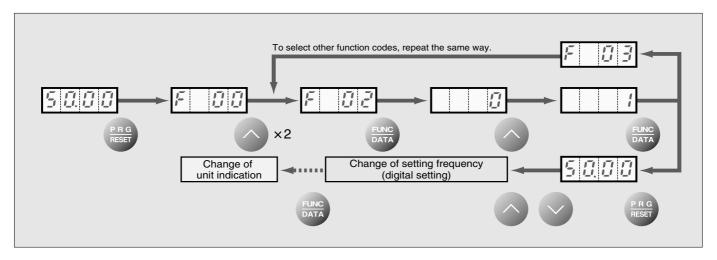
2.2 FVR-E11S series

LED monitor	Operation mode indication		
In Operation mode: Displays the setting frequency, output current, voltage, motor speed, or line speed. In Trip mode: Displays code indicating the cause of trip.	□ RUN: This LED goes on during operating. □ PANEL CONTROL: When Function code F□ □ □ is set at □ □ □, □ □ □ □ is (Keypad operation), this LED goes on.		
Program/Reset key Switches between operation mode and program mode. When tripped: Releases the trip-stop state and changes to operation mode.	Unit indication Displays the unit of the value shown on the LED monitor. Run key Starts the inverter. In Stop mode: Invalid when the function code [Fig.2] is set at [Fig.4] (external operation).		
Function/Data select key Changes the displayed values of LED monitor, selects and stores the function codes and data codes. Up/Down keys	Stop key Stops the inverter. In Operation mode: Invalid when the function code F D is set at (external operation).		
In Operation mode: Increases or decreases the frequency or motor speed. In Program mode: Increases or decreases function code number and data set value.			

■ Keypad panel operation

- Turn on the power supply, press the or key to set the output frequency.
 When you press the key, the motor will run at the set frequency and with function code/data at factory shipment. When you press the key, the motor will decelerates and stops.
- Procedure for selecting and changing function codes and data codes.The keypad panel operation how to select a function code and change its data code is explained below.
 - 1 Press the es key to select the program mode.
 - ② Pressing key alternates the displayed data between the function code and its data.

- ③ With data displayed, press the ♠ or ♠ key to change the data code.
- 4 Press the key to update the data for the selected function code.
 - * In step ② above, if the o or vert key is pressed when the function code is displayed, only the function code changes sequentially (see below).


(F 00) F 01) F 02 > F 03 > •	• • • • •)	▶ •	44	G	F	▶	5	G		F	ı	1	G		F	٠	00		۶
--	-------------	-----	----	---	---	---	---	---	--	---	---	---	---	--	---	---	----	--	---

■ The keypad panel modes are classified in the following 5 modes.

	Mode	Program mode	Program mode			
Monitor, k	eys	(operation stopped)	(during operation)	Stop mode	Operation mode	Trip mode
	8888	Displays the function code or data code. (Blinking)	Displays the function code or data code. (Lighting)	Displays the set frequency, output current, output voltage, motor speed, line speed. (Blinking)	Displays the output frequency, output current, output voltage, motor speed, line speed. (Lighting)	Displays the trip content or alarm history. (Blinking or lighting)
		Indicates the PRG mode during stopping.	Indicates the PRG mode during operation.	Unit indication of the above value.	Unit indication of the above value.	None
Monitor	PRG MODE Hz A V r/min m/min	PRG MODE Hz A V Lighting r/min m/min	PRG MODE Hz A V Lighting r/min m/min	PRG MODE Freq Hz	Freq PRG MODE Freq PRG MODE Current PRG MODE Voltage PRG MODE Voltage PRG MODE Voltage PRG MODE Virnin m/min PRG MODE HHZ A V Virnin m/min PRG MODE Line Speed PRG MODE Line Speed PRG MODE Constant rate of leeding time HZ A V Virnin m/min PRG MODE Voltage PRG MODE Virnin m/min Virnin m/min	Not lit
	PANEL CONTROL	Indicates whether keypad (ON during keypad panel	None (Lighting)			
	RUN	Indicates the operation has stopped. (RUN not lit)	Indicates during operation. (RUN lighting)	Indicates the operation has stopped. (RUN not lit)	Indicates during operation. (RUN lighting)	Indicates "stopping in trip mode." (RUN lighting)
	P R G RESET	Switches to the stop mode.	Changes to operation mode.	Switches to "Program mode (operation stopped)."	Switches to "Program mode during operation."	Releases the trip and switches to "stop mode" or "operation mode."
	FUNC DATA	Changes the display betw data code, stores data co function codes.		Shifts the value on the LE the unit indication LED.	ED monitor and the unit of	Invalid
Keys	00	Increases/decreases function code number and data code.	Increases/decreases the data code number and stores data temporary.	Increases/decreases the motor speed, line speed.	setting of frequency,	Displays the alarm history.
	RUN	Invalid	Invalid	Switches to operation mode.	Invalid	Invalid
	STOP	Invalid	Switches to "stop mode" or "Program mode (operation stopped)."	Invalid	Switches to the stop mode.	Invalid

* Procedure for selecting function codes and data codes (Ex. Changing data code from to function code F 3 2)

3. Function Explanation

- E11S series does not have the LCD monitor.
- "=>" means the related functions and the set value

3.1 Fundamental Functions

■ F00 Data protection

F00 DATA PRTC

Setting can be made so that a set value cannot be changed by KEYPAD panel operation.

- Set value 0: The data can be changed.
 - 1: The data cannot be changed.

[Setting procedure]

- 0 → 1: Press the STOP and A keys simultaneously to change the value from 0 to 1, then press the key to validate the change.
- 1 → 0 : Press the STOP and V keys simultaneously to change the value from 1 to 0, then press the key to validate the change.

■ F01 Frequency command 1

F01 FREQ CMD1

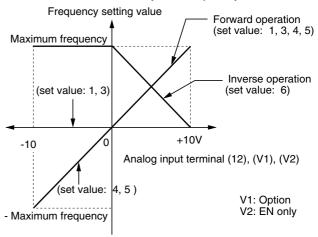
This function selects the frequency setting method.

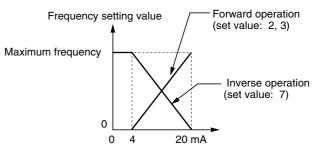
⇒ E01 to E09 (E01 to E05 for E11S)

[G11S/P11S E11S]

- 0 0: Setting by KEYPAD panel operation (key).
- 1 1: Setting by voltage input (terminal 12 and V2) (0 to +10Vdc, 0 to 5Vdc).
 - NOTE: Terminal V2 is only for EN version of G11S.
- 2 2: Setting by current input (terminal C1) (4 to 20mAdc).
- 3|3: Setting by voltage input + current input (terminal 12 + terminal C1) (0 to +10V + 4 to 20mA).

 The setting frequency is determined by adding inputs to terminals 12 and C1.
- 4 4: Reversible operation with polarized voltage input (terminal 12). (-10 to +10Vdc)
- 5 -: Reversible operation with polarized voltage input (terminal 12) + voltage command auxiliary input (optional terminal V1) + voltage input (terminal V2) (-10 to +10Vdc)


The setting frequency is determined by adding inputs to terminals 12, V1 and V2.

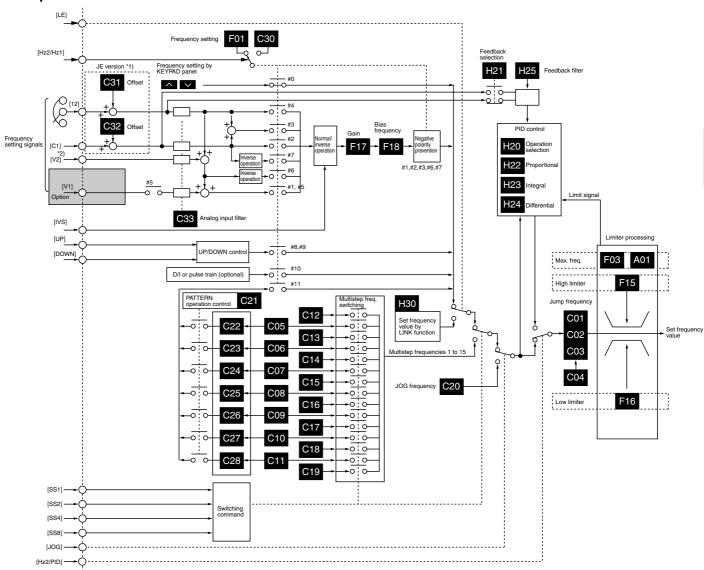

- * Polarized input allows operation in the direction opposite that of an operation command. NOTE: Terminal V2 is only for EN version of G11S.
- 6|5: Inverse mode operation (terminal 12 and V2) (+10 to 0Vdc)
- NOTE: Terminal V2 is only for EN version of G11S.
- 7 6: Inverse mode operation (terminal C1) (20 to 4mA)
- 8 7: Setting by UP/DOWN control mode 1 (initial value = 0) (terminals UP and DOWN)

- 9|8: Setting by UP/DOWN control mode 2 (initial value = last final value) (terminals UP and DOWN)
 - See the function explanation of E01 to E09 for details.
- 10 -: Setting by PATTERN operation

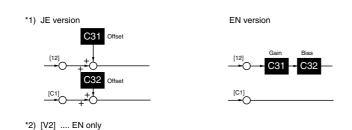
11 : Setting by DI option or Pulse train input (Option)
For details, see the instruction manual on options.

• Forward and inverse operation (Example of G11S/P11S)

Analog input terminal (C1)


■ F02 Operation method

F02 OPR METHOD


This function sets the operation command input method.

- Set value 0: KEYPAD operation (FWD , REV , and STOP (G11S/P11S) keys).
 - Input from terminals FWD and REV is ignored.
 - 1: Operation by external input (terminals FWD and REV).
- Set value 0: KEYPAD operation (RUN and STOP)
 (E11S) Forward or reverse is determined by signal input.
 - 1: Operation by external input (terminals FWD and REV).
 - 2: KEYPAD operation (RUN to Forward)
 - 3: KEYPAD operation (RUN to Reverse)
- This function can only be changed when terminals FWD and REV are open.
- REMOTE/LOCAL switching from the KEYPAD panel automatically changes the set value of this function.

Example of G11S/P11S

Frequency setting block diagram (Example of G11S/P11S)

■ F03 Maximum frequency 1

F03 MAX Hz-1

This function sets the maximum output frequency for motor 1.

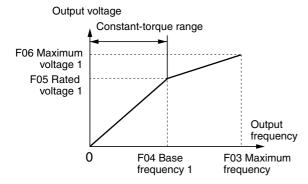
- Setting range G11S, E11S: 50 to 400Hz

P11S: 50 to 120Hz

Setting a value higher than the rated value of the equipment to be driven may damage the motor or machine. Match this value with the rating of the equipment.

■ F04 Base frequency 1

F04 BASE Hz-1


This function sets the maximum output frequency in the constant-torque range of motor 1 or the output frequency at the rated output voltage. Match this value with he rating of the motor.

- Setting range G11S, E11S: 25 to 400Hz

P11S: 25 to 120Hz

NOTE:

When the set value of base frequency 1 is higher than that of maximum output frequency 1, the output voltage does not increase to the rated voltage because the maximum frequency limits the output frequency.

■ F05 Rated voltage 1

F05 RATED V-1

This function sets the rated value of the voltage output to motor 1. Note that a voltage higher than the supply (input) voltage cannot be output.

- Setting range 200V series: 0, 80 to 240V 400V series: 0, 320 to 480V

Value 0 terminates operation of the voltage regulation function, thereby resulting in the output of a voltage proportional to the supply voltage.

NOTE:

When the set value of rated voltage 1 exceeds maximum output voltage 1, the output voltage does not increase to the rated voltage because the maximum output voltage limits the output voltage.

■ F06 Maximum voltage 1

F06 MAX V-1

This function sets the maximum value of the voltage output for motor 1. Note that a voltage higher than the supply (input) voltage cannot be output.

- Setting range 200V series: 80 to 240V 400V series: 320 to 480V

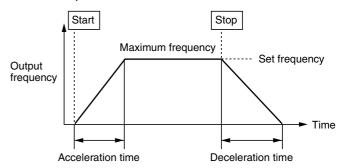
■ F07 Acceleration time 1

■ F08 Deceleration time 1

F07 ACC TIME1 F08 DEC TIME1

This function sets the acceleration time for the output frequency from startup to maximum frequency and the deceleration time from maximum frequency to operation stop.

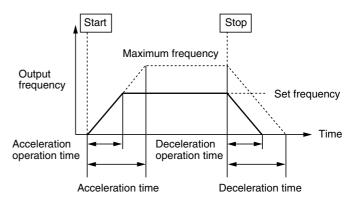
- Setting range Acceleration time 1: 0.01 to 3600s


Deceleration time 1: 0.01 to 3600s

Acceleration and deceleration times are represented by the three most significant digits, thereby the setting of three high-order digits can be set.

Set acceleration and deceleration times with respect to maximum frequency. The relationship between the set frequency value and acceleration/deceleration times is as follows:

Set frequency = maximum frequency


The actual operation time matches the set value.

Set frequency < maximum frequency

The actual operation time differs from the set value. Acceleration/deceleration operation time

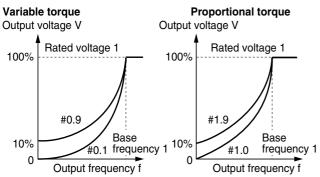
= set value x (set frequency/maximum frequency)

NOTE:

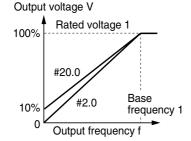
If the set acceleration and deceleration times are too short even though the resistance torque and moment of inertia of the load are great, the torque limiting function or stall prevention function is activated, thereby prolonging the operation time beyond that stated above.

■ F09 Torque boost 1

F09 TRQ BOOST1


This is a motor 1 function. The following can be selected:

- Selection of load characteristics such as automatic torque boost, variable torque load, proportional torque load, constant torque load.
- Enhancement of torque (V/f characteristics), which is lowered during low-speed operation. Insufficient magnetic flux of the motor due to a voltage drop in the low-frequency range can be compensated.


Setting range	Characteristics selected
0.0	Automatic torque boost characteristic where the torque boost value of a constant torque load (a linear change) is automatically adjusted
0.1 to 0.9 (1)	Variable torque characteristics for fan and pump loads
1.0 to 1.9 (2)	Proportional torque for middle class loads between variable torque and constant torque (linear change)
2.0 to 20.0 (3 to 31)	Constant torque (linear change)

(): E11S series

Torque characteristics (Example of G11S/P11S series)

Constant torque

NOTE:

As a large torque boost value creates over-excitation in the low-speed range, continued operation may cause the motor to overheating. Check the characteristics of the driven motor.

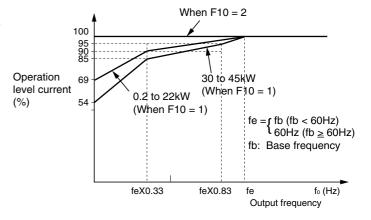
- F10 Electronic thermal O/L relay for motor 1(Select)
- F11 Electronic thermal O/L relay (Level)
- F12 Electronic thermal O/L relay (Thermal time constant)

The electronic thermal O/L relay manages the output frequency, output current, and operation time of the inverter to prevent the motor from overheating when 150% of the set

current value flows for the time set by F12 (thermal time constant).

F10 ELCTRN OL1

This function specifies whether to operate the electronic thermal O/L relay and selects the target motor. When a standard motor is selected, the operation level is lowered in the low speed range according to the cooling characteristics of the motor


- Set value 0: Inactive
 - 1: Active (for standard motor)
 - 2: Active (for inverter motor)

OL LEVEL1

This function sets the operation level (current value) of the electronic thermal. Enter a value from 1 to 1.1 times the current rating value of the motor.

The setting range is 20 to 135% of the rated current of the inverter.

Operation level current and output current



F12 TIME CNST 1

The time from when 150% of the operation level current flows continuously to when the electronic thermal O/L relay activates can be set.

- Setting range G11S/P11S: 0.5 to 75.0 min (in 0.1 min steps) E11S : 0.5 to 10.0 min (in 0.1 min steps)

Current-operation time characteristics example

3. Function Explanation

■ F13 Electronic thermal O/L relay (for braking resistor)

F13 DBR OL

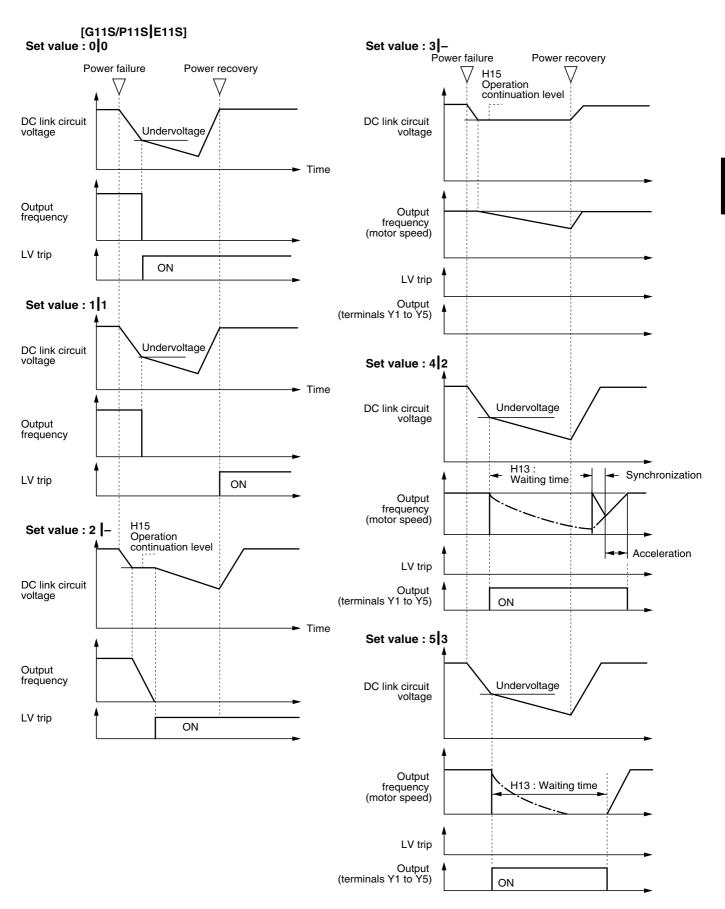
This function controls the frequent use and continuous operating time of the braking resistor to prevent the resistor from overheating.

Inverter capacity	Operation
G11S: 7.5kW or less	Inactive Active (built-in braking resistor) Active (external braking resistor)
P11S: 11kW or less	Inactive Active (external braking resistor)
G11S: 11kW or more P11S: 15kW or more	0: Inactive
E11S:	 0: Inactive 1: Active (external braking resistor: DB2C) 2: Active (external braking resistor: TK80W 120Ω)

■ F14 Restart mode after momentary power failure (Select)

F14 RESTART

This function selects operation if momentary power failure occurs.


The function for detecting power failure and activating protective operation (i.e., alarm output, alarm display, inverter output cutoff) for undervoltage can be selected. The automatic restart function (for automatically restarting a coasting motor without stopping) when the supply voltage is recovered can also be selected.

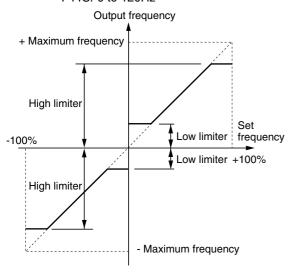
- Setting range: 0 to 5 (0 to 3 for E11S) The following table lists the function details.

Operation after momentary power failure

Set val	ue	Function name	Operation at power failure	Operation at n	ower recovery
G11S/P11S	E11S	i diletion name	Operation at power familie	Operation at p	ower recovery
0	0	Inactive (immediate inverter trip)	If undervoltage is detected, the protective function is activated and output stops.	Inverter is not restarted.	Inputting the protective function reset
1	1	Inactive (inverter trip at recovery)	If undervoltage is detected, the protective function is not activated, but output stops.	The protective function is activated, but operation is not restarted.	command and operation command restarts operation.
2		Inactive (inverter trip after deceleration to a stop at powerfailure)	When the operation continuation level (H15) is reached, deceleration to a stop occurs. The DC voltage of the main circuit sharpens the deceleration slope so that the undervoltage protective function is not activated. The inverter collects the inertia energy of the load and control the motor until it stops, then the undervoltage protective function is activated. If the amount of inertia energy from the load is small, and the undervoltage level is achieved during deceleration, the undervoltage protective function is then activated.	The protective function is activated, and operation is not restarted.	
3	1	Active (operation continued, for high-inertia loads)	When the operation continuation level is achieved, energy is collected from the inertia amount of the load to extend the operation continuation time. If undervoltage is detected, the protective function is not activated, but output stops.	Operation is automatic. For power recovery dution, rotation accelerate frequency. If undervolt operation automatically frequency at that time.	ring operation continua- es directly to the original age is detected,
4	2	Active (restart with the frequency at power failure)	If undervoltage is detected, the protective function is not activated and output stops.	Operation is automatical frequency at power fail	
5	3	Active (restart with the starting frequency, for low-inertia loads)	If undervoltage is detected, the protective function is not activated and output stops.	Operation is automatic frequency set by F23, '	

- Function codes H13 to H16 (H13, H14 for E11S) are provided to control a restarting operation after momentary power failure. These functions should be understood and used.
- The rotating motor pick-up (speed search) function can also be selected as a method of restarting when power is recovered following a momentary failure. (For setting details, see function code H09.)
- The pick-up function searches for the speed of the coasting motor to restart the motor without subjecting it to excessive shock.
- In a high-inertia system, the reduction in motor speed is minimal even when the motor is coasting. A speed searching time is required when the pick-up function is active. In such a case, the original frequency may be recovered sooner when the pick-up function is inactive and the operation restarted with the frequency prior to the momentary power failure.
- The pick-up function works in the range of 5 to 120Hz. If the detected speed is outside this range, restart the motor using the regular restart function.

3. Function Explanation


- **■** F15 Frequency limiter (High)
- F16 Frequency limiter (Low)

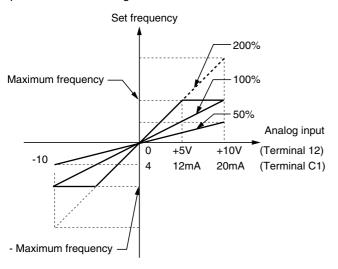
H LIMITER F15

F16 **L LIMITER**

This function sets the upper and lower limits for the setting frequency.

- Set values: G11S, E11S: 0 to 400Hz P11S: 0 to 120Hz

- The inverter output starts with the starting frequency when operation begins, and stops with the stop frequency when operation ends.

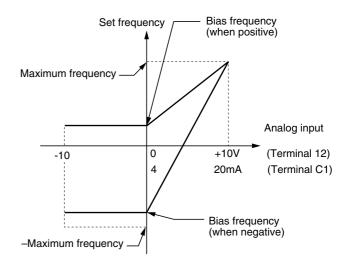

 If the upper limit value is less than the lower limit value, the upper
- limit value overrides the lower limit value.

■ F17 Gain (for frequency setting signal)

FREQ GAIN

This function sets the rate of the set frequency value to analog input.

Operation follows the figure below.


■ F18 Bias frequency

FREQ BIAS F18

This function adds a bias frequency to the set frequency value to analog input.

The operation follows the figure below.

When the bias frequency is higher than the maximum frequency or lower than the - (minus) maximum frequency, it is limited to the maximum or -maximum frequency.

- F20 DC brake (Starting freq.)
- F21 DC brake (Braking level)
- F22 DC brake (Braking time)

DC BRK Hz F20

Starting frequency: This function sets the frequency at which DC injection brake starts operation during deceleration, to decelerate the motor to a stop.

- Set values: 0.0 to 60.0Hz

F21 DC BRK LVL

Operation level: This function sets the output current level when a DC injection brake is activated. Set a percentage of inverter rated output current in 1% steps.

- Set values: G11S, E11S: 0 to 100% P11S: 0 to 80%

F22 DC BRK t

Time: This function sets the time of a DC injection brake operation.

- Set value 0.0: Inactive 0.1 to 30.0s

Do not use the inverter brake function for mechanical holding. Injury may result.

- **■** F23 Starting frequency (Freq.)
- F24 Starting frequency (Holding time)
- **■** F25 Stop frequency

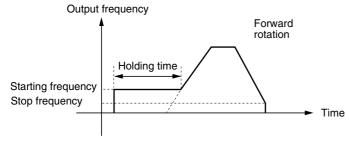
The starting frequency can be set to reserve the torque at startup and can be sustained until the magnetic flux of the motor is being established.

F23 START Hz

Frequency: This function sets the frequency at startup.

- Set values: 0.1 to 60.0Hz

F24 HOLDING t


Holding time: This function sets the holding time during which the start frequency is sustained at startup.

- Set values: 0.1 to 10.0s
- * The holding time does not apply at the time of switching between forward and reverse.
- * The holding time is not included in the acceleration time.
- * The holding time also applies when pattern operation (C21) is selected. The holding time is included in the timer value.

F25 STOP Hz

This function sets the frequency at stop.

- Set values: 0.1 to 6.0Hz

The operation does not start when the starting frequency is less than the stop frequency or when the setting frequency is less than the stop frequency.

■ F26 Motor sound (Carrier freq.)

F26 MTR SOUND

This function adjusts the carrier frequency, correct adjustment of which prevents resonance with the machine system, reduces motor sound and inverter noise, and also reduces leakage current from output circuit wiring.

Series	Nominal applied motor	Setting range
	55kW or less	0.75 to 15kHz
(CT use: EN)	75kW or more	0.75 to 10kHz
P11S	22kW or less	0.75 to 15kHz
(VT use:	30 to 75kW	0.75 to 10kHz
EN, EV)	90kW or more	0.75 to 6kHz

Carrier frequency	Low	High
Motor sound	High	Low
Output current waveform	Bad	Good
Leakage current	Small	Large
Noise occurrence	Extremely low	High

NOTES:

- 1. Reducing the set value adversely affects the output current waveform (i.e., higher harmonics), increases motor loss, and raises motor temperature. For example, at 0.75kHz, reduce the motor torque by about 15%.
- 2. Increasing the set value increases inverter loss and raises inverter temperature.

■ F27 Motor sound (Sound tone)

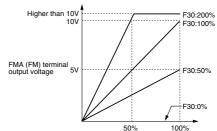
F27 MTR TONE

The tone of motor sound can be altered when the carrier frequency is 7kHz or lower. Use this function as required.

- Set values: 0, 1, 2, 3

■ F29 FMA and FMP terminals (Select) (E11S only)

Select the terminal function of the FM terminal.


- 0: Analog output (FMA function)
- 1: Pulse output (FMP function)
- F30 FMA (Voltage adjust)
- F31 FMA (Function)

Monitor data (e.g., output frequency, output current) can be output to terminal FMA (G11S/P11S), FM (E11S) as a DC voltage. The amplitude of the output can also be adjusted.

F30 FMA V-ADJ

This function adjusts the voltage value of the monitor item selected in F31 when the monitor amount is 100%. A value from 0 to 200 (%) can be set in 1% steps.

- Set values: 0 to 200%

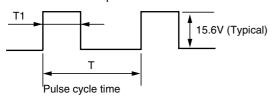
FMA FUNC

This function selects the monitor item to be output to terminal FMA (G11S/P11S), FM (E11S).

Set va	lue	Monitor item	Definition of 100% monitor amount
G11S/P11S	E11S		
0	0	Output frequency 1 (before slip compensation)	Maximum output frequency
1	1	Output frequency 2 (after slip compensation)	Maximum output frequency
2	2	Output current	Rated output current of inverter x 2
3	3	Output voltage	Maximum output voltage of inverter (200V series: 250V, 400V series: 500V)
4	4	Output torque	Rated torque of motor x 2
5	5	Load factor	Rated load of motor x 2
6	6	Input power	Rated output of inverter x 2
7	7	PID feedback value	Feedback value of 100%
8	-	PG feedback value (only when option is installed)	Synchronous speed at maximum frequency
9	8	DC link circuit voltage	200V series: 500V 400V series: 1000V
10	_	Universal AO	0 to 10V

- **■** F33 FMP terminal (Pulse rate)
- **■** F34 FMP terminal (Voltage adjust)
- **■** F35 FMP terminal (Function)

Monitor data (e.g., output frequency, output current) can be output to terminal FMP (G11S/P11S), FM (E11S) as pulse voltage. Monitor data can also be sent to an analog meter as average voltage.


When sending data to a digital counter or other instrument as pulse output, set the pulse rate in F33 to any value and the voltage in F34 to 0%.

When data is sent to an analog meter or other instrument as average voltage, the voltage value set in F34 determines the average voltage and the pulse rate in F33 is fixed to 2670 (p/s).

F33 FMP PULSES

This function sets the pulse frequency of the monitor item selected in F35 within a range of 300 to 6000p/s in 1 p/s steps.

- Set values: 300 to 6000 p/s

Pulse frequency (p/s) = 1/TDuty (%) = $T1/T \times 100$ Average voltage (V) = $15.6 \times T1/T$

F34 FMP V-ADJ

This function sets the average voltage of pulse output to terminal FMP (G11S/P11S), FM (E11S).

Set values

0%: The pulse frequency varies depending on the monitor amount of the monitor item selected in

F35. (The maximum value is the value set in

F33.)

1 to 200%: Pulse frequency is fixed at 2670 p/s. The

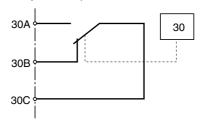
average voltage of the monitor item selected in F35 when the monitor amount is 100% is adjusted in the 1 to 200% range (1% steps).

(The pulse duty varies.)

FMP FUNC

This function selects the monitor item to be output to terminal FMP (G11S/P11S), FM (E11S).

The set value and monitor items are the same as those of F31.


■ F36 30Ry operation mode

F36 30RY MODE

This function specifies whether to activate (excite) the alarm output relay (30Ry) for any fault at normal or alarm status.

Set value	Operation	
()	Normal mode Trip mode	30A-30C : OFF, 30B-30C : ON 30A-30C : ON, 30B-30C : OFF
	Normal mode Trip mode	30A-30C : ON, 30B-30C : OFF 30A-30C : OFF, 30B-30C : ON

When the set value is 1, contacts 30A and 30C are connected after the inverter control voltage is established (about one second after power on).

- F40 Torque limiter 1 (Driving)
- F41 Torque limiter 1 (Braking)

	DRV TRQ 1
F41	BRK TRQ 1

- The torque limit operation calculates motor torque from the output voltage, current and the primary resistance value of the motor, and controls the frequency so the calculated value does not exceed the limit. This operation enables the inverter to continue operation under the limit even if a sudden change in load torque occurs.
- Select limit values for the driving torque and braking torque.
- When this function is activated, acceleration and deceleration operation times are longer than the set values.

Function	Set value	Operation
Torque limit (Driving)	G11S,E11S: 20% to 200% P11S: 20% to 150%	The torque is limited to the set value.
	999	Torque limiting inactive
Torque limit G11S,E11S: 20% to 20 (Braking) P11S: 20% to 15		The torque is limited to the set value.
	0	Automatically prevents OU trip due to power regeneration effect.
	999	Torque limiting inactive

When the torque limit function is selected, an operation may not match the set acceleration and deceleration time or set speed. The machine should be so designed that safety is ensured even when operation does not match set values.

■ F42 Torque vector control 1

F42 TRQVECTOR1

To obtain the motor torque most efficiently, the torque vector control calculates torque according to load, to adjust the voltage and current vectors to optimum values based on the calculated value.

Set value	Operation
0	Inactive
1	Active

- When 1 (Active) is set, the set values of the following functions differ from the written values:
- "F09 Torque boost 1"
 Automatically set to 0.0 (automatic torque boost).
- "P09 Slip compensation control 1"
 Slip compensation is automatically activated.
 When 0.0 is set, the amount of slip compensation for the FUJI standard 3-phase motor is applied. Otherwise, the written value is applied.
- Use the torque vector control function under the following conditions:
- There must be only one motor.
 Connection of two or more motors makes accurate control difficult.
- 2. The function data ("P03 Rated current", "P06 No-load current", "P07 %R1 setting", and "P08 %X setting) of motor 1 must be correct.
 - When the FUJI standard 3-phase motor is used, setting the capacity (function P02) ensures entry of the above data. A tuning operation should be performed for other motors.
- The rated current of the motor must not be significantly less than the rated current of the inverter. A motor two ranks lower in capacity than the nominal applied motor for the inverter should be used at the smallest (depending on the model).
- 4. To prevent leakage current and ensure accurate control, the length of the cable between the inverter and motor should not exceed 50m.
- 5. When a reactor is connected between the inverter and the motor, or the impedance of the wiring cannot be disregarded, use "P04 Tuning" to rewrite data.

If these conditions are not satisfied, set 0 (Inactive).

3.2 Extension Terminal Functions

■ E01 X1 terminal function

■ E09 X9 terminal function

E01	X1 FUNC	(G11S/P11S, E11S)
E02	X2 FUNC	(G11S/P11S, E11S)
E03	X3 FUNC	(G11S/P11S, E11S)
E04	X4 FUNC	(G11S/P11S, E11S)
E05	X5 FUNC	(G11S/P11S, E11S)
E06	X6 FUNC	(G11S/P11S only)
E07	X7 FUNC	(G11S/P11S only)
E08	X8 FUNC	(G11S/P11S only)
E09	X9 FUNC	(G11S/P11S only)

Each function of digital input terminals (G11S/P11S: X1 to X9, E11S: X1 to X5) can be set as codes.

Set value		Function
G11S/P11S E11S		
0, 1, 2, 3		Multistep frequency selection (1 to 15 steps)
4, 5	4	Acceleration and deceleration time selection
		(G11S/P11S: 3 steps, E11S: 1 step)
6	5	3-wire operation stop command [HLD]
7	6	Coast-to-stop command [BX]
8	7	Alarm reset [RST)
9	8	Trip command (External fault) [THR]
10	ı	Jogging operation [JOG)
11	9	Freq. set 2/Freq. set 1 [Hz2/Hz1]
12	10	Motor 2/motor 1 [M2/M1]
13	11	DC brake command [DCBRK]
14	12	Torque limiter 2/Torque limiter 1 [TL2/TL1]
15	ı	Switching operation between line and inverter (50Hz) [SW50]
16	ı	Switching operation between line and inverter (60Hz) [SW60]
17	13	UP command [UP]
18	14	DOWN command [DOWN]
19	15	Write enable for KEYPAD (data change permission) [WE-KP]
20	16	PID control cancel [Hz/PID]
21	17	Inverse mode changeover (terminals 12 and C1) (IVS)
22	-	Interlock signal for 52-2 [IL]
23	_	Torque control cancel [Hz/TRQ]
24	18	Link enable (RS485: standard, Bus: option) [LE]
25	_	Universal DI [U-DI]
26	-	Pick up start mode [STM]
27	-	SY-PG enable [PG/Hz]
28	-	Synchronization command [SYC]
29	-	Zero speed command [ZERO]
30	-	Forced stop command [STOP1]
31	_	Forced stop command with Deceleration time 4 [STOP2]
32	_	Pre-exciting command [EXITE]

NOTE:

Data numbers which are not set in the functions from E01 to E09 or E05, are assumed to be inactive.

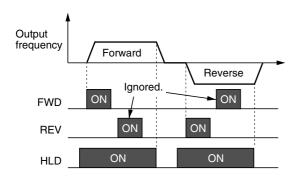
Multistep frequency selection : 0, 1, 2, 3

The frequency can be switched to a preset frequency in function codes C05 to C19 by switching the external digital input signal. Assign values $\bf 0$ to $\bf 3$ to the target digital input terminal. The combination of input signals determines the frequency.

Multistep frequency selection

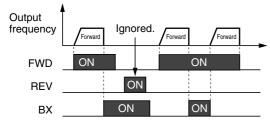
Combination of set value input signals				Frequency	v coloated
3 (SS8)	2 (SS4)	1 (SS2)	0 (SS1)	Frequency selected	
off	off	off	on	C05 Multistep Hz1	
off	off	on	off	C06 Multistep Hz2	
off	off	on	on	C07 Multistep Hz3	□ C05 to C19
off	on	off	off	C08 Multistep Hz4	
off	on	off	on	C09 Multistep Hz5	
off	on	on	off	C10 Multistep Hz6	
off	on	on	on	C11 Multistep Hz7	Setting range
on	off	off	off	C12 Multistep Hz8	
on	off	off	on	C13 Multistep Hz9	G11S, E11S: 0.00 to 400.00Hz
on	off	on	off	C14 Multistep Hz10	P11S:
on	off	on	on	C15 Multistep Hz11	0.00 to 120.00Hz
on	on	off	off	C16 Multistep Hz12	
on	on	off	on	C17 Multistep Hz13	
on	on	on	off	C18 Multistep Hz14	
on	on	on	on	C19 Multistep Hz15	

Acceleration and deceleration time selection :4,5 4


The acceleration and deceleration time can be switched to a preset time in function codes E10 to E15 by switching the external digital input signal. Assign values "4" and "5" to the target digital input terminal. The combination of input signals determines the acceleration and deceleration times. (E11S: E10 and E11 only)

(Example of G11S/P11S)

Combination of set value input signals		Acceleration and decele	eration times
5 (RT2)	4 (RT1)	selected	
off	off	F07 Acceleration time 1 F08 Deceleration time 1	□> F07, F08
off	on	E10 Acceleration time 2 E11 Deceleration time 2	E10 to E15
on	off	E12 Acceleration time 3 E13 Deceleration time 3	Setting range 0.01 to 3600s
on	on	E14 Acceleration time 4 E15 Deceleration time 4	0.01 10 36008


Three-wire operation stop command [HLD] : 6 5

This function is used for 3-wire operation. The FWD or REV signal is self-held when HLD is on, and the self-hold is cleared when HLD is turned off. To use this HLD terminal function, assign value "6 5" to the target digital input terminal.

Coast-to-stop command [BX) : 7 6

When BX and CM (P24 for EN) are connected, inverter output is cut off immediately and the motor starts to coast-to-stop. An alarm signal is neither output nor self-held. If BX and CM (P24 for EN) are disconnected when the operation command (FWD or REV) is on, operation starts at the starting frequency. To use this BX terminal function, assign value "7 6" to the target digital input terminal.

Alarm reset [RST] : 8 7

When an inverter trip occurs, connecting RST and CM (P24 for EN) clears the alarm output (for any fault); disconnecting them clears trip indication and restarts operation. To use this RST terminal function, assign value "8 7" to the target digital input terminal.

Trip command (External fault) [THR] : 9 8

Disconnecting THR and CM (P24 for EN) during operation cuts off inverter output (i.e., motor starts to coast-to-stop) and outputs alarm OH2, which is self-held internally and cleared by RST input. This function is used to protect an external brake resistor and other components from overheating. To use this THR terminal function, assign value "9[8" to the target digital input terminal. ON input is assumed when this terminal function is not set.

Jogging operation [JOG] : 10

This function is used for jogging (inching) operation to position a workpiece. When JOG and CM (P24 for EN) are connected, the operation is performed with the jogging frequency set in function code C20 while the operation command (FWD-CM (P24 for EN)) or REV-CM (P24 for EN)) is on. To use this JOG terminal function, assign value "10" to the target digital input terminal.

(G11S/P11S only)

Freq. set 2/Freq. set 1 : 11 9

This function switches the frequency setting method set in function codes F01 and C30 by an external digital input signal.

Set value input signal 11 9	Frequency setting method selected	
off	F01 Frequency command 1	
on	C30 Frequency command 2	

Motor 2/motor 1 : 12 10

This function switches motor constants using an external digital input signal.

Set value input signal 12 10	Motor selected
off	Motor 1
on	Motor 2

DC brake command: 13 11

When the external digital input signal is on, DC injection braking starts when the inverter's output frequency drops below the frequency preset in function code F20 after the operation command goes off. (The operation command goes off when the STOP key is pressed at KEYPAD panel operation or when both terminals FWD and REV go on or off at external signal operation.) The DC injection braking continues while the digital input signal is on. In this case, the longer time of the following is selected:

- The time set in function code F22.
- The time which the input signal is set on.

Note that operation restarts when the operation command goes on.

Set value input signal 13 11	Operation selected
off	No DC injection brake command is given.
on	A DC injection brake command is given.

Torque limiter 2/Torque limiter 1 : 14 12

This function switches the torque limit value set in function codes F40 and F41, and E16 and E17 by an external digital input signal.

Set value input signal 14 12	Torque limit value selected		
off	F41 BRK TRQ 1	Setting range DRV: 20 to 200%, 999	
on	E16 DRV TRQ 2 E17 BRK TRQ 2	BRK: 0, 20 to 200%, 999	

Switching operation between line and inverter(50Hz) [SW50] :15 -

Motor operation can be switched from 50Hz commercial power operation to inverter operation without stopping the motor by switching the external digital input signal. (G11S/P11S only)

Set value input signal	Function	
15		
off → on	From inverter operation to line operation (50Hz)	
on \rightarrow off	From line operation to inverter operation (50Hz)	

Switching operation between line and inverter(60Hz) [SW60] :16 -

Motor operation can be switched from 60Hz commercial power operation to inverter operation without stopping the motor by switching the external digital input signal. (G11S/P11S only)

Set value input signal	Function
off → on	From inverter operation to line operation (60Hz)
on → off	From line operation to inverter operation (60Hz)

When the digital input signal goes off, 50 or 60 Hz is output according to the set value input signal after the restart waiting time following a momentary power failure (function code H13). The motor is then directed to inverter operation.

UP command [UP]/DOWN command [DOWN] :17,18 13,14

When an operation command is input (on), the output frequency can be increased or decreased by an external digital input signal.

The change ranges from 0 to maximum frequency. Operation in the opposite direction of the operation command is not allowed.

Combination of set value input signals			Function selected	
	18 14 17 13		(when operation command is on)	
	off	off	Holds the output frequency.	
	off	on	Increases the output frequency according to the acceleration time.	
	on	off	Decreases the output frequency according to the deceleration time.	
	on	on	Holds the output frequency.	

There are the two types of UP/DOWN operations as shown below. Set the desired type by setting the frequency command (F01 or C30).

Initial value at power input on	Operation command reentry during deceleration
	Operates at the frequency at reentry.
	Frequency
0Hz	
	FWD ON OFF
	Returns to the frequency before
	deceleration
	Frequency
Previous	Ť
rrequericy	
	FWD ON
	(REV) OFF
	power input on 0Hz

Write enable for KEYPAD (data change permission) [WE-KP] : 19 15

This function allows the data to be changed only when an external signal is being input, thereby making it difficult to change the data.

Set value input signal 19 15	Function selected	
off	Data protected	
on	Data change enable	

NOTE:

If a terminal is set to value 19, the data becomes unable to be changed. To change the data, turn on the terminal and change the terminal setting to another number.

PID control cancel [Hz/PID] : 20 16

The PID control can be disabled by an external digital input signal. \Rightarrow H20 to H25

Set value input signal 20 16	Function selected	
off	Enable PID control.	
on	Disable PID control (frequency setting from KEYPAD panel).	

Inverse mode changeover [IVS] : 21 17

The analog input (terminals 12 and C1) can be switched between normal and inverse operations by an external digital input signal.

Set value input signal 21 17	Function selected
off	Normal mode setting → Normal operation Inverse mode setting → Inverse operation
on	Normal mode setting → Inverse operation Inverse mode setting → Normal operation

Interlock signal 52-2 [IL] : 22 -

When a magnetic contactor is installed on the output side of the inverter, the contactor opens at the time of a momentary power failure, which hinders the reduction of the DC circuit voltage and may prevent the detection of a power failure and the correct restart operation when power is recovered. The restart operation at momentary power failure can be performed effectively with power failure information provided by an external digital input signal. (G11S/P11S only)

Set value input signal 22	Function	
off	No momentary power failure detection by digital input	
on	Momentary power failure detection by digital input	

(G11S/P11S only)

Torque control cancel [Hz/TRQ] : 23 -

When function code "H18 Torque control" is set to be active (value 1 or 2), this operation can be canceled externally. Assign value "23" to the target digital input terminal and switch between active and inactive in this input signal state. (G11S/P11S only)

Set value input signal	Function selected	
23		
off	Torque control function active The input voltage to terminal 12 is the torque command value.	
on	Torque control function inactive The input voltage to terminal 12 is the frequency command value. PID feedback amount when PID control operation is selected (H20 = 1 or 2)	

Link enable (RS485: standard, Bus: option) [LE] : 24 18

Frequency and operation commands from the link can be enabled or disabled by switching the external digital input signal. Select the command source in "H30 Serial link". Assign value "24 18" to the target digital input terminal and switch between valid or invalid in this input signal state.

Set value input signal 24l18	Function selected	
off	Link command invalid.	
on	Link command valid	

Universal DI [U-DI] : 25 -

Assigning value "25" to a digital input terminal renders the terminal a universal DI terminal. The ON/OFF state of signal input to this terminal can be checked through the RS485 or optional BUS.

This input terminal is only used to check for an incoming input signal through communication and does not affect inverter operation. (G11S/P11S only)

Pick up start mode [STM] : 26 -

The start mode (rotating motor pick-up) in function code H09 can be enabled or disabled by switching the external digital input signal. Assign value "26" to the target digital input terminal and enable or disable the function in this input signal state. (G11S/P11S only)

Set value input signal	Function selected	
off	Start mode disabled.	
on	on Start mode enabled.	

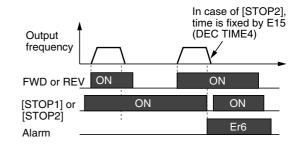
SY-PG enable (Option) [PG/Hz] : 27 -

Synchronization command (Option) [SYC] : 28 -

Zero speed command with PG option [ZERO] : 29 -

Pre-exciting command with PG option [EXITE] : 32 -

These functions are used for PG-Option or SY-Option card. Refor to each instruction manual.


Forced stop command with Deceleration [STOP1] : 30

Forced stop command with Deceleration time 4 [STOP2]

Normally this terminal should be "ON", when this terminal goes off durring motor running, the motor decelerates to stop, and outputs alarm "Er6".

In case of terminal [STOP2], the decelertion time is determined by E15 (DEC TIME4).

This function is prioritized under any operation (Terminal, Keypad, Communication...operation).

Settings when shipped from the factory

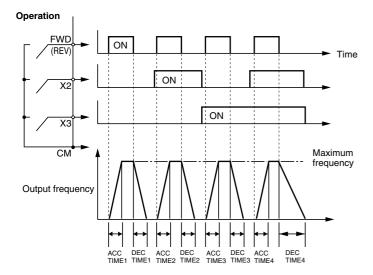
G11S/P11S

Digital input	Setting at factory shipment		
Digital Iliput	Set value	Description	
Terminal X1	0	Multistep freq. selection [SS1]	
Terminal X2	1	Multistep freq. selection [SS2]	
Terminal X3	2	Multistep freq. selection [SS4]	
Terminal X4	3	Multistep freq. selection [SS8]	
Terminal X5	4	ACC/DEC selection [RT1]	
Terminal X6	5	ACC/DEC selection [RT2]	
Terminal X7	6	3-wire operation stop command [HLD]	
Terminal X8	7	Coast-to-stop command [BX]	
Terminal X9	8	Alarm reset [RST]	

E11S

Digital input	Setting at factory shipment	
Digital Iliput	Set value	Description
Terminal X1	0	Multistep freq. selection [SS1]
Terminal X2	1	Multistep freq. selection [SS2]
Terminal X3	2	Multistep freq. selection [SS4]
Terminal X4	6	Coast-to-stop command [BX]
Terminal X5	7	Alarm reset [RST]

3. Function Explanation


- E10 Acceleration time 2
- **■** E11 Deceleration time 2
- **■** E12 Acceleration time 3
- **■** E13 Deceleration time 3
- **■** E14 Acceleration time 4
- **■** E15 Deceleration time 4

E10	ACC TIME2
E11	DEC TIME2
E12	ACC TIME3
E13	DEC TIME3
E14	ACC TIME4
E15	DEC TIME4

⇒ E01 to E09: 4, 5

- Three other types of acceleration and deceleration time can be selected as well as Acceleration time 1 (F07) and deceleration time 1 (F08).
- The operation and setting ranges are the same as those of acceleration time 1 and deceleration time 1. See explanations for F07 and F08.
- For switching acceleration and deceleration times, select any two terminals from terminal X1 (function selection) in E01 to terminal X9 [X5] (function selection) in E09 [E05] as switching signal input terminals. Set "4 4" (acceleration and deceleration time 1) and "5 —" (acceleration and deceleration time 2) to the selected terminals and input a signal to each terminal to switch acceleration and deceleration times. Switching is possible during acceleration, deceleration, or constant-speed operation. (Value in [] are for E11S.)

Example: When 4 and 5 are set to terminals X2 and X3:

■ E16 Torque limiter 2 (Driving)

■ E17 Torque limiter 2 (Braking)

E16	DRV TRQ 2
E17	BRK TRQ 2

• This function is used to switch the torque limit level set in F40 and F41 by an external control signal. Input an external signal by selecting any of the control input terminals (X1 to X9) as Torque limiter 2/Torque limiter 1 (value 14) in E01 to E09.

⇒ E01 to E09 : 14 (E01 to E05: 12 for E11S)

■ E20 Y1 terminal function

to

■ E24 Y5A, Y5C terminal function

E20	Y1 FUNC	(G11S/P11S, E11S)
E21	Y2 FUNC	(G11S/P11S, E11S)
E22	Y3 FUNC	(G11S/P11S only)
E23	Y4 FUNC	(G11S/P11S only)
E24	Y5 FUNC	(G11S/P11S only)

 Some control and monitor signals can be selected and output from terminals (G11S/P11S: Y1 to Y4, Y5A, Y5C, E11S: Y1, Y2). Terminals Y1 to Y4 use transistor output; terminals Y5A and Y5C use relay contacts for G11S/P11S.

0-1		Outrot simple			
Set value G11S/P11S E11S		Output signal			
		Increase a company (DLIM)			
0	0	Inverter running [RUN]			
1	1	Frequency equivalence signal [FAR]			
2	2	Frequency level detection [FDT1] ([FDT] for E11S)			
3	3	Undervoltage detection signal [LU]			
4	4	Torque polarity [B/D]			
5	5	Torque limiting [TL]			
6	6	Auto-restarting (IPF)			
7	7	Overload early warning [OL1] ([OL] for E11S)			
8	_	KEYPAD operation mode [KP]			
	8	Lifetime ararm (main circuit capactor) [LIFE]			
9	-	Inverter stopping [STP]			
	9	2nd Frequency equivalence detection [FAR2]			
10	_	Ready output [RDY]			
11	-	Line/Inverter changeover for 88 [SW88]			
12	-	Line/Inverter changeover for 52-2 [SW52-2]			
13	_	Line/Inverter changeover for 52-1 [SW52-1]			
14	_	Motor 2 / Motor 1 [SWM2]			
15	_	Auxiliary terminal (for 52-1) [AX]			
16	_	PATTERN operation time-up signal [TU]			
17	_	PATTERN operation cycle completion signal [TO]			
18	_	PATTERN operation stage No. indication 1 [STG1]			
19	_	PATTERN operation stage No. indication 2 [STG2]			
20	_	PATTERN operation stage No. indication 4 [STG4]			
21	_	Alarm indication 1 [AL1]			
22	_	Alarm indication 2 [AL2]			
23	-	Alarm indication 4 [AL4]			
24	-	Alarm indication 8 [AL8]			
25	_	Fan operation signal [FAN]			
26	_	Auto-resetting [TRY]			
27	_	Universal DO [U-DO] *			
28	_	Overheat early warning [OH]			
29	_	Synchronization completion signal [SY] *			
30	_	-			
31	_	2nd Freq. level detection [FDT2]			
32	_	2nd OL level early warning [OL2]			
33	_	Terminal C1 off signal			
34	_	Speed exstence signal [DNZS]			
		- - - - - - - - - -			

NOTE

For output signals marked *, refer to instruction manuals for RS485 communication and the synchronized operation card.

Inverter running [RUN] : 0

"Running" means that the inverter is outputting a frequency. "RUN" signal is output when there is output speed (frequency). When the DC injection brake function is active, this signal is not output.

Frequency equivalence signal [FAR] : 1

See the explanation of function code "E30 FAR function signal (Hysteresis)".

Frequency level detection [FDT1] : 2

See the explanation of function codes "E31 and E32 FDT1 function signal". ([FDT] for E11S)

Undervoltage detection signal [LU]: 3

If the undervoltage protective function activates, i.e. when the DC link circuit voltage falls below the undervoltage detection level, an ON signal is output. The signal goes off when the voltage recovers and increases above the detection level. The ON signal is retained while the undervoltage protective function is activating.

Undervoltage detection level 200V series: 200V DC or less 400V series: 400V DC or less

Torque polarity [B/D]: 4

This function determines the torque polarity calculated in the inverter and outputs a signal indicating driving or braking torque. An OFF signal is output for driving torque; an ON signal is output for braking torque.

Torque limiting [TL] : 5

When the torque limiting activates, the stall prevention function is automatically activated to change the output frequency. The torque limiting signal is output to lighten the load, and also used to display overload conditions on the monitor device.

This ON signal is output during the current or torque is being limited or power regeneration is prevented.

Auto-restarting [IPF] : 6

Following a momentary power failure, this function reports the start of the restart mode, the occurrence of an automatic pull-in, and the completion of the recovery operation.

Following a momentary power failure, an ON signal is output when power is recovered and a synchronization (pull-in) operation is performed. The signal goes off when the frequency (before power failure) is recovered.

For 0Hz restart at power recovery, no signal is output because synchronization ends when power is recovered. The frequency is not recovered to the frequency before the power failure occurrence.

Overload early warning [OL1] : 7

Before the motor stops by the trip operation of an electronic thermal O/L relay, this function outputs an ON signal when the load reaches the overload early warning level.

Either the electronic thermal O/L relay early warning or output current overload early warning can be selected.

For setting procedure, see "E33 OL1 function signal (Mode select)", and "E34 OL1 function signal (Level)." NOTE: This function is effective for motor 1 only.

KEYPAD operation mode [KP]: 8 -

An ON signal is output when operation command keys (FWD, REV, and STOP keys) on the KEYPAD panel can be used (i.e., 0 set in "F02 Operation method") to issue operation and stop commands. (G11S/P11S only)

Lifetime alarm (main circuit capacitor): -8

Outputs lifetime forecast of main circuit capacitor. (E11S only)

Inverter stopping [STP] : 9 -

This function outputs an inverted signal to Running [RUN] to indicate zero speed. An ON signal is output when the DC injection brake function is operating.

Ready output [RDY]: 10 -

This function outputs an ON signal when the inverter is ready to operate. The inverter is ready to operate when the main circuit and control circuit power is established and the inverter protective function is not activating.

About one second is required from power-on to ready for operation in normal condition.

Line/Inverter changeover [SW88] [SW52-2][SW52-1]

: 11, 12, 13**|**-

To perform switching operation between the line and the inverter, the sequence prepared in the inverter can be used to select and output signals for opening and closing the magnetic contactors connected to the inverter. As the operation is complex, refer to technical documentation for the FRENIC5000G11S/P11S series when using this function. As the sequence will operate automatically when SW88 or SW52-2 is selected, do not select when not using the sequence.

Motor 2 / Motor 1 [SWM2] : 14 -

When a signal for switching to motor 2 is input from the terminal selected by terminals X1 to X9, this function selects and outputs the signal for switching the magnetic contactor for the motor. As this switching signal is not output during running including when the DC injection braking function is operating, a signal must be re-input after output stops.

Auxiliary terminal (for 52-1) [AX] : 15 -

When an operation (forward or reverse) command is entered, this function outputs an ON signal. When a stop command is entered, the signal goes off after inverter output stops. When a coast-to-stop command is entered and the inverter protective function operates, the signal goes off immediately.

PATTERN operation time-up signal [TU]: 16 -

When the pattern operation stage changes, this function outputs a one-shot (100ms) ON signal to report a stage change.

PATTERN operation cycle completion signal [TO]: 17 -

When the seven stages of a pattern operation are completed, this function outputs a one-shot (100ms) ON signal to report the completion of all stages.

PATTERN operation stage No. indication [STG1] [STG2] [STG4]

During PATTERN operation, this function reports the stage (operation process) being operated.

PATTERN operation	Output terminal			
stage No.	STG 1	STG 2	STG 4	
Stage 1	on	off	off	
Stage 2	off	on	off	
Stage 3	on	on	off	
Stage 4	off	off	on	
Stage 5	on	off	on	
Stage 6	off	on	on	
Stage 7	on	on	on	

When pattern operation is not activated (i.e., no stage is selected), the terminals do not output a signal.

Alarm indication [AL1] [AL2] [AL4] [AL8] : 21 to 24 -

This function reports the operating status of the inverter protective function.

Alarm detail	Output terminal			
(inverter protective function)	AL1	AL2	AL4	AL8
Overcurrent, ground fault, fuse blown	on	off	off	off
Overvoltage	off	on	off	off
Undervoltage, input phase loss	on	on	off	off
Motors 1 and 2 overload	off	off	on	off
Inverter overload	on	off	on	off
Heat sink overheating, inverter inside overheating	off	on	on	off
External alarm input, braking resistor overheating	on	on	on	off
Memory error, CPU error	off	off	off	on
KEYPAD panel communication error, option communication error	on	off	off	on
Option error	off	on	off	on
Output wiring error	off	off	on	on
RS485 communication error	on	off	on	on
Overspeed, PG disconnection	off	on	on	on

In normal operation, terminals do not output a signal.

Fan operation signal [FAN]: 25 -

When used with "H06 Fan stop operation," this function outputs a signal while the cooling fan is operating.

Auto-resetting [TRY] : 26 -

When a value of 1 or larger is set to "H04 Auto-reset," the signal is output while retry operation is activating when the inverter protective function is activated.

Universal DO [U-DO] : 27 -

Assigning value "27" to a transistor output terminal renders the terminal a universal DO terminal.

This function enables ON/OFF through the RS485 and BUS option.

This function serves only to turn on and off the transistor output through communication and is not related to inverter operation.

Overheat early warning [OH] : 28 -

This function outputs an early warning signal when heat sink temperature is (overheat detection level - 10°C) or higher.

Synchronization completion signal [SY]: 29 -

Outputs ON signal when syncoronization is completed. (only when an optional Synchronized Operation Card is used)

2nd Freq. level detection [FDT2] : 31 -

This function is same as Frequency detection [FDT1], the detection level of the output frequency and hystersis width are determined by E36 and E32.

2nd OL level early warning [OL2] : 32 -

This function outputs an ON signal when the output current exceed "E37 OL2 LEVEL" for longer than "E35 OL TIMER".

Terminal C1 off signal [C10FF] : 33 -

This function outputs an ON signal when the input current of terminal C1 is less than 2mA.

Speed existence signal [DNZS]: 34 -

This function output an ON signal when the motor speed is detected. Only when using an optional card, OPC-G11S-PG/PG2 or OPC-G11S-SY.

2nd Freq. equivalence detection [FAR2]: - 9

See the explanation of function code "E29 Frequency equivalence delay". (E11S only)

Settings when shipped from the factory

G11S/P11S

Digital output	Factory setting		
Set value		Description	
Terminal Y1	0	Inverter running [RUN]	
Terminal Y2	1	Frequency equivalence signal [FAR]	
Terminal Y3	2	Frequency level detection [FDT1]	
Terminal Y4	7	Overload early warning [OL1]	
Terminal Y5	15	15 Auxiliary terminal (for 52-1) [AX]	

E11S

Digital output	Factory setting		
	Set value Description		
Terminal Y1	0 Inverter running [RUN]		
Terminal Y2	7 Overload early warning [OL]		

■ E25 Y5 RY operation mode

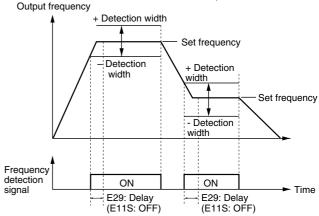
(G11S/P11S only)

E25 Y5RY MODE

This function adetermaines the operation mode of Y5 relay.

- Set value 0: Inactive (Y5 relay excites at "ON signal" mode)
 - 1: Active (Y5 relay excites at "OFF signal" mode)

- **■** E29 Frequency equivalence delay (E11S only)
- **■** E30 FAR function signal (Hysteresis)


E30 FAR HYSTR

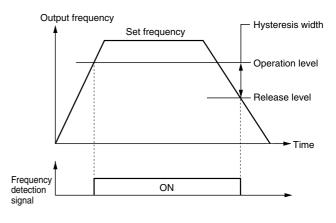
This function adjusts the detection width (and signal output delay for E11S) when the output frequency is the same as the set frequency (operating frequency). The delay is valid only for FAR2 (E11S). The detection width can be adjusted from 0 to ± 10 Hz of the setting frequency.

- E29 Setting range: 0.01 to 10.0s
- E30 Setting range: 0.0 to 10.0 Hz

When the frequency is within the detection width, an ON signal can be selected and output from terminals Y1 to Y5.

(Y1 and Y2 for E11S)

- **■** E31 FDT1 function signal (Level)
- E32 FDT1 function signal (Hysteresis)


E31 FDT1 LEVEL E32 FDT HYSTR

This function determines the operation (detection) level of the output frequency and hysteresis width for its operation release. When the output frequency exceeds the set operation level, an ON signal can be selected and output from terminals Y1 to Y5. (Y1 and Y2 for E11S)

- Setting range Operation level : G11S, E11S: 0 to 400Hz

P11S: 0 to 120Hz

Hysteresis width: 0.0 to 30.0Hz

■ E33 OL1 function signal (Mode select) (OL for E11S)

E33 OL1 WARNING

Select one of the following two types of overload early warning: early warning by electronic thermal O/L relay function or early warning by output current.

- Set value 0: Electronic thermal O/L relay

1: Output current

Set value	Function	Description
0	Electronic thermal O/L relay	Overload early warning by electronic thermal O/L relay (having inverse-time characteristics) to output current. The operation selection and thermal time constant for the inverse-time characteristics are the same as those of the electronic thermal O/L relay for motor protection (F10 and F12).
1	Output current	An overload early warning is issued when output current exceeds the set current value for the set time.

■ E34 OL1 function signal (Level)

(OL for E11S)

E34 OL1 LEVEL

This function determines the operation level of the electronic thermal O/L relay or output current.

- Setting range G11S: 5 to 200% of inverter rated output current

P11S: 5 to 150% of inverter rated output

E11S: 20 to 200% of inverter rated output current

The operation release level is 90% of the set value.

■ E35 OL1 function signal (Timer) (OL for E11S)

E35 OL TIMER

This function is used when 1 (output current) is set to "E33 OL1 function signal (Mode select)."

- Setting range: 0.0 to 60.0s

Set the time from when the operation level is attained until the overload early warning function is activated.

■ E36 FDT2 function (Level)

(G11S/P11S only)

E36 FTD2 LEVEL

This function determines the operation (detection) level of the output frequency for motor 2, and operates the same as "E31 FDT1 function signal (Level)".

For details, see the explanation for E31.

■ E37 OL2 function (Level)

(G11S/P11S only)

E37 OL2 LEVEL

This function determines the operation level of the electronic thermal O/L relay, and operates the same as "E34 OL1 function signal (Level)".

This overcurrent early warning can be output regardless of the setting of "E33 OL1 function signal (Mode select)" and "Motor 1 or 2". For details, see the explanation for E34.

■ E40 Display coefficient A

■ E41 Display coefficient B

E40 COEF A

E41 COEF B

These coefficients are conversion coefficients which are used to determine the load and line speed and the target value and feedback amount (process amount) of the PID controller displayed on the LED monitor.

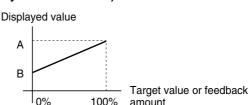
- Setting range

G11S/P11S

Display coefficient A: -999.00 to 0.00 to +999.00 Display coefficient B: -999.00 to 0.00 to +999.00

E11S

Display coefficient A: 0.00 to 200.0 Display coefficient B: 0.00 to 200.0


Load and line speed

Use the "E40 Display coefficient A".

Displayed value = output frequency x (0.01 to 200.00) Although the setting range is ± 999.00 , the effective value range of display data is 0.01 to 200.00. Therefore, values smaller or larger than this range are limited to a minimum value of 0.01 or a maximum value of 200.00.

 Target value and feedback amount of PID controller Set the maximum value of display data in "E40 Display coefficient A," and the minimum value in "E41 Display coefficient B."

Displayed value = (target value or feedback amount) x (display coefficient A - B) - B

■ E42 LED display filter

E42 DISPLAY FL

Among data in "E43 LED monitor (Function)," some data need not be displayed instantaneously when the data changes. For such data, a flickering suppression filter can be used.

- Setting range: 0.0 to 5.0 seconds

Monitored items in "E43 LED monitor (Function)"

Set value	Display item	Set value	Display item
3	Output current	8	Calculated torque value
4	Output voltage	9	Input power

■ E43 LED Monitor (Function) (G11S/P11S only)

■ E44 LED Monitor (Display at STOP mode)
(G11S/P11S only)

E43	LED MNTR	
E44	LED MNTR2	

The data during inverter operation, during stopping, at frequency setting, and at PID setting is displayed on the LED monitor.

Display during running and stopping

During running, the items selected in "E43 LED Monitor (Function)," are displayed. In "E44 LED Monitor (Display at STOP mode)," specify whether to display some items out of the set values or whether to display the same items as during running.

Value set	E44=0		E44	l=1
to E43	Stopping	Running	Stopping	Running
0	Set frequency value (Hz)	Output frequency (before slip compensation) (Hz)		
1	Set frequency value (Hz)	Output frequency (after slip compensation) (Hz)		
2	Set frequency value	(Hz)		
3	Output current (A)	Output current (A)		
4	Output voltage (com	nmand value) (V)		
5	Synchronous speed set value (r/min)	Synchronou	s speed (r/mi	n)
6	Line speed set value (m/min.)	Line speed ((m/min.)	
7	Load shaft speed set value (r/min)	Load shaft s	peed (r/min)	
8	Calculated torque value (%)			
9	Input power (kW)			
10	PID reference value (Final value)			
11	PID reference value (remote)			
12	PID feedback amou	nt		

NOTE

For the values 10 to 12 set to E43, the data is displayed only when selected in "H20 PID control (Mode select)."

• Display at frequency setting

When a set frequency is checked or changed by the KEY-PAD panel, the set value shown below is displayed. Select the display item by using "E43 LED Monitor (Function)." This display is not affected by "E44 LED Monitor (Display at STOP mode)."

Value set to E43 Frequency setting		
0, 1, 2, 3, 4	Set frequency value (Hz)	
5	Synchronous speed set value (r/min)	
6	Line speed set value (m/min.)	
7	Load shaft speed set value (r/min)	
8, 9	Set frequency value (Hz)	
10, 11, 12	10, 11, 12 Set frequency value (Hz)	

NOTE:

For the values 10 to 12 set to E43, the data is displayed only when selected in "H20 PID control (Mode select)."

■ E45 LCD Monitor (Function) (G11S/P11S only)

=45 LCD MNTR

This function selects the item to be displayed on the LCD monitor in the operation mode.

Set value	Display item	
0	Operation status, rotating direction, operation guide	
1	Output frequency (before slip compensation), output current, calculated torque value in bar graph	

Set value: 0

During running

When stopping

Set value: 1

Full-scale value of bar graph

Display item	Full-scale
Output frequency	Maximum frequency
Output current	200% of inverter rated value
Calculated torque value	200% of motor rated value

NOTE: The scale cannot be adjusted.

■ E46 Language

(G11S/P11S only)

E46 LANGUAGE

This function selects the language for data display on the LCD monitor.

Set value	Language displayed	Set value	Language displayed
0	Japanese	3	French
1	English	4	Spanish
2	German	5	Italian

■ E47 LCD monitor (Contrast) (G11S/P11S only)

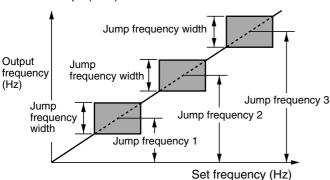
E47 CONTRAST

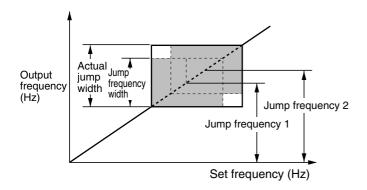
This function adjusts the LCD contrast. Increase the set value to raise contrast and decrease to lower contrast.

Set value	0, 1, 2 8, 9, 10	_
Screen	Soft ← Hard	_

3. Function Explanation

3.3 Control Functions of Frequency

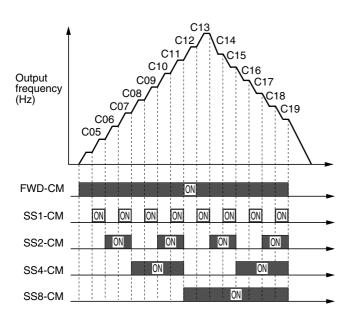

- C01 Jump frequency 1
- C02 Jump frequency 2
- C03 Jump frequency 3
- C04 Jump frequency (Hysteresis)
- This function makes the set frequency jump so that the inverter's output frequency does not match the mechanical resonance point of the load.
- Up to three jump points can be set.
- This function is ineffective when jump frequencies 1 to 3 are set to 0Hz.
- A jump does not occur during acceleration or deceleration.
- When a jump frequency setting range overlaps another range, both ranges are added to determine the actual jump area.


C01	JUMP Hz 1
C02	JUMP Hz 2
C03	JUMP Hz 3

- Set value G11S, E11S: 0 to 400Hz P11S: 0 to 120Hz In 1Hz steps (min.)

C04 JUMP HYSTR

- Set value 0 to 30Hz In 1Hz steps (min.)


- C05 Multistep frequency setting 1 to
- C19 Multistep frequency setting 15

C05	MULTI Hz-1
C06	MULTI Hz-2
C 07	MULTI Hz-3
C08	MULTI Hz-4
C09	MULTI Hz-5
C10	MULTI Hz-6
C11	MULTI Hz-7
C12	MULTI Hz-8
C13	MULTI Hz-9
C14	MULTI Hz-10
C15	MULTI Hz-11
C16	MULTI Hz-12
C17	MULTI Hz-13
C18	MULTI Hz-14
C19	MULTI Hz-15

⇒ E01 to E09 : 0 to 3

- Multistep frequencies 1 to 15 can be switched by turning on and off terminal functions SS1, SS2, SS4, and SS8. (See E01 to E09 for terminal function definitions.)
- OFF input is assumed for any undefined terminal of SS1, SS2, SS4, and SS8.
- Set value G11S, E11S: 0 to 400Hz P11S: 0 to 120Hz In 0.01Hz steps (min.)

(E11S: E01 to E05)

■ C20 JOG frequency

(G11S/P11S only)

C20 JOG Hz

This function sets the frequency for jogging operation of motor, which is different from the normal operation.

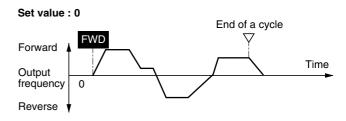
- Setting range G11S: 0.00 to 400.00Hz

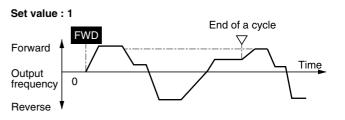
P11S: 0.00 to 120.00Hz

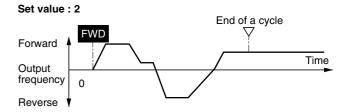
Starting with the jogging frequency is combined with jogging select signal input from the KEYPAD panel or control terminal. For details, see the explanations of "E01 X1 terminal function," to "E09 X9 terminal function."

■ C21 Pattern operation (Mode select) (G11S/P11S only)

C21 PATTERN


Pattern operation is an automatic operation according to preset operation time, direction of rotation, acceleration and deceleration time, and frequency.


When using this function, set 10 (pattern operation) at "F01 Frequency setting."


⇒ F01, C30: 10

The following operation patterns can be selected:

Set value	Operation pattern	
0	Perform a pattern operation cycle, then stop operation.	
1	Perform pattern operation repeatedly. Stop operation using a stop command.	
2	Perform a pattern operation cycle, then continue operation with the last frequency set.	

■ C21 Timer operation

(E11S only)

This function selects timer operation. For FVR-E11S series, operation time can be set at C22 but Pattern operation is not available.

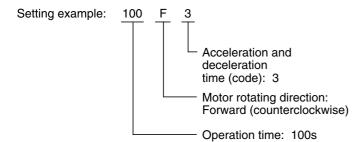
- Set value 0: Inactive 1: Active

■ C22 PATTERN operation (stage 1)

■ C28 PATTERN operation (stage 7)

C22	STAGE 1	(G11S/P11S, E11S)
C23	STAGE 2	(G11S/P11S only)
C24	STAGE 3	(G11S/P11S only)
C25	STAGE 4	(G11S/P11S only)
C26	STAGE 5	(G11S/P11S only)
C27	STAGE 6	(G11S/P11S only)
C28	STAGE 7	(G11S/P11S only)

*For G11S/P11S series


Seven stages are operated in order (of function codes) according to the values set in "C22 Pattern operation (stage 1)," to "C28 Pattern operation (stage 7)." Each function sets the operation time, the rotating direction, and acceleration and deceleration time for each stage.

3. Function Explanation

Set item	Setting range
Operation time 0.00 to 6000 s	
Rotation direction	F: Forward (counterclockwise) R: Reverse (clockwise)
Acceleration and deceleration time	1: Accel. time 1 (F07), decel. time 1 (F08) 2: Accel. time 2 (E10), decel. time 2 (E11) 3: Accel. time 3 (E12), decel. time 3 (E13) 4: Accel. time 4 (E14), decel. time 4 (E15)

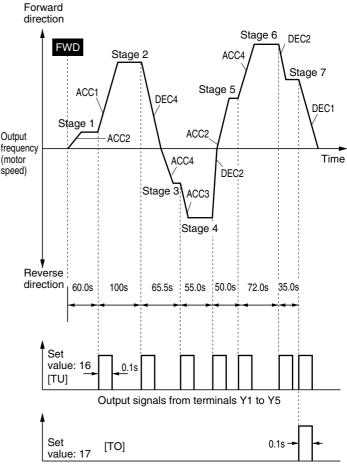
NOTE:

The operation time is represented by the three most significant digits, hence, can be set with only three high-order digits.

Set the operation time to 0.00 for stages not used, which are skipped in operation.

With regard to the set frequency value, the multistep frequency function is assigned as listed in the table below. Set frequencies to "C05 Multistep frequency setting (Freq. 1)", to "C11 Multistep frequency setting (Freq. 7)".

Stage No.	Operation frequency to be set
Stage 1	C05 Multistep frequency setting (Freq. 1)
Stage 2	C06 Multistep frequency setting (Freq. 2)
Stage 3	C07 Multistep frequency setting (Freq. 3)
Stage 4	C08 Multistep frequency setting (Freq. 4)
Stage 5	C09 Multistep frequency setting (Freq. 5)
Stage 6	C10 Multistep frequency setting (Freq. 6)
Stage 7	C11 Multistep frequency setting (Freq. 7)


Pattern operation setting example

Function	Set value	Operation frequency to be set
C21 (Mode select)	1	-
C22 (stage 1)	60.0F2	Multistep frequency setting (Freq. 1)
C23 (stage 2)	100F1	Multistep frequency setting (Freq. 2)
C24 (stage 3)	65.5R4	Multistep frequency setting (Freq. 3)
C25 (stage 4)	55.0R3	Multistep frequency setting (Freq. 4)
C26 (stage 5)	50.0F2	Multistep frequency setting (Freq. 5)
C27 (stage 6)	72.0F4	Multistep frequency setting (Freq. 6)
C28 (stage 7)	35.0F2	Multistep frequency setting (Freq. 7)

*For FVR-E11S series

- Setting range 0.00 to 3600s Rotation direction and accel/decel time cannot be set. Only C22 is available.

The following diagram shows this pattern operation example.

Running and stopping are controlled by pressing the **FWD** and **STOP** keys or by opening and closing the control terminals.

When using the KEYPAD panel, pressing the FWD key starts operation. Pressing the STOP key pauses stage advance. Pressing the FWD key again restarts operation from the stop point according to the stages.

If an alarm stop occurs, press the **RESET** key to release operation of the inverter protective function, then press the **FWD** key to restart stage advance.

If required to start operation from the first stage "C22 Pattern operation (stage 1)," press the **STOP** key and press the **RESET** key.

If an alarm stop occurs, press the **RESET** key to release the protective function, then press the **RESET** key again.

NOTES:

- The direction of rotation cannot be reversed by a command issued from the REV key on the KEYPAD panel or terminal REV. Any reverse rotation commands entered are canceled. Select forward or reverse rotation by the data in each stage. When the control terminals are used for operation, the self-hold function of operation command also does not work. Select an alternate type switch when using.
- At the end of a cycle, the motor decelerates-to-stop according to the value set to "F08 Deceleration time 1."

■ C30 Frequency setting 2

C30 FREQ CMD 2

⇒ E01 to E09 : 11; F01

This function selects the frequency setting method. [G11S/P11S|E11S]

- 0 0: Setting by KEYPAD panel operation (key).
- 1 1: Setting by voltage input (terminal 12) (0 to +10Vdc).
- 22: Setting by current input (terminal C1) (4 to 20 Adc).
- 3 3: Setting by voltage input + current input (terminal 12 + terminal C1) (0 to +10V + 4 to 20mA).

 The setting frequency is determined by adding inputs to terminals 12 and C1.
- 4|4: Reversible operation with polarized voltage input (terminal 12). (-10 to +10Vdc)
- 5 -: Reversible operation with polarized voltage input (terminal 12) + voltage command auxiliary input (optional terminal V1) (-10 to +10Vdc) The setting frequency is determined by adding inputs to terminals 12 and V1.
 - * Polarized input allows operation in the direction opposite that of an operation command.
- 6 5: Inverse mode operation (terminal 12) (+10 to 0Vdc)

- 7 6: Inverse mode operation (terminal C1) (20 to 4mA)
- 8 7: Setting by UP/DOWN control mode 1 (initial value = 0) (terminals UP and DOWN)

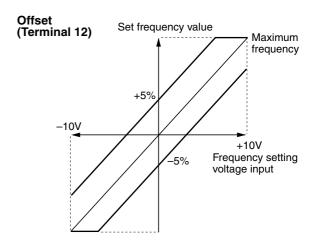
- 98: Setting by UP/DOWN control mode 2 (initial value = last final value) (terminals UP and DOWN)
 See the function explanation of E01 to E09 for details.
- 10 -: Setting by PATTERN operation
 See the function explanation C21 to C28 for details.

11 -: Setting by DI option or Pulse train input (Option)
For details, see the instruction manual on options.

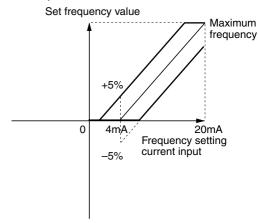
For the setting method, see the explanation for F01.

(E11S: E01 to E05)

[For JE version]


- C31 Offset (Terminal 12)
- C32 Offset (Terminal C1)

C31 OFFSET 12


C32 OFFSET C1

This function sets the offset of the analog input (terminals 12 and C1).

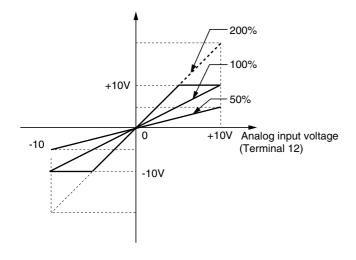
The setting range is -5.0 to +5.0% (in 0.1% steps) of the maximum output frequency.

Offset (Terminal C1)

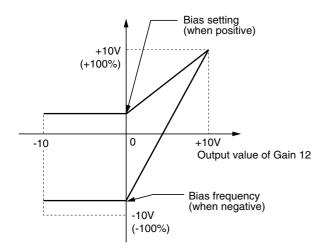
3. Function Explanation

[For EN version]

- C31 Bias (Terminal 12)
- C32 Gain (Terminal 12)


C31 BIAS 12 C32 GAIN 12

This function sets the gain and bias of the analog input (terminals 12).


-Setting range Bias: -100 to +100% Gain: 0.0 to 200%

Oputput value of Gain 12

Oputput value of Bias 12

■ C33 Analog setting signal filter

C33 REF FILTER

Analog signals input from control terminal 12 or C1 may contain noise, which renders control unstable. This function adjusts the time constant of the input filter to remove the effects of noise.

- Setting range: 0.00 to 5.00s

A set value too large delays control response though stabilizing control. A set value too small speeds up control response but renders control unstable.

If the optimum value is unknown, change the setting when control is unstable or response is delayed.

NOTE:

The set value is commonly applied to terminals 12 and C1. For input of PID feedback amount, the "H25 PID control (Feedback filter)" is used.

3.4 Motor Parameters

■ P01 Number of motor 1 poles

P01 M1 POLES

This function sets the number of poles of motor 1 to be driven. If this setting is not made, an incorrect motor speed (synchronous speed) is displayed on the LED.

- Set values: 2, 4, 6, 8, 10, 12, 14

■ P02 Motor 1 (Capacity)

P02 M1-CAP

The nominal applied motor capacity is set at the factory. The setting should be changed when driving a motor with a different capacity.

- Set value:

G11S/P11S

Models with nominal applied motor of 22kW or less: 0.01 to 45kW

Models with nominal applied motor of 30kW or more: 0.01 to 500kW

E11S

Models with nominal applied motor of 3.7kW or less: 0.01 to 5.50kW

Models with nominal applied motor of 5.5kW or more: 0.01 to 11.00kW

- Set the nominal applied motor capacity listed in "Standard Specifications" in Chapter 1. Also set a value in the range from two ranks lower to one rank higher than the nominal applied motor capacity. When a value outside this range is set, accurate control cannot be guaranteed. If a value between two nominal applied motor capacities is set, data for the lower capacity is automatically written regarding related function data.
- When the setting of this function is changed, the values of the following related functions are automatically set to data of the FUJI 3-phase standard motor.

P03 Motor 1 (Rated current)

P06 Motor 1 (No-load current)

P07 Motor 1 (% R1 setting)

P08 Motor 1 (% X1 setting)

NOTE

The set values for the FUJI standard 3-phase motor are 200V, 50Hz, 4 poles for the 200V series; 400V, 50Hz, 4 poles for the 400V series.

■ P03 Motor 1 (Rated current)

P03 M1-lr

This function sets the rated current value of motor 1.

- Set value: G11S/P11S: 0.00 to 2000A E11S: 0.00 to 99.9A

■ P04 Motor 1 (Tuning)

P04 M1 TUN1

This function measures and automatically writes motor data.

Set value	Operation
0	Inactive
1	Measure the primary resistance (%R1) of the motor and leakage reactance (%X) of the base frequency when the motor is stopping and automatically write both values in P07 and P08.
2	Measure the primary resistance (%R1) of the motor and leakage reactance (%X) of the base frequency when the motor is stopping, measure the no-load current (lo) when the motor is running, and automatically write these values in P06, P07, and P08.

Perform "Tuning" when data written beforehand in "P06 Noload current," "P07 %R1," and "P08 %X," differs from actual motor data. Typical cases are listed below. Tuning improves control and calculation accuracy.

- When a motor other than the FUJI standard 3-phase motor is used and accurate data is required for close control.
- When output-side impedance cannot be ignored as when cable between the inverter and the motor is too long or when a reactor is connected.
- When %R1 or %X is unknown as when a non-standard or special motor is used.

Tuning procedure

- Adjust the voltage and frequency according to motor characteristics. Adjust functions "F03 Maximum frequency 1," "F04 Base frequency 1," "F05 Rated voltage 1," and "F06 Maximum voltage 1."
- Enter untunable motor constants first. Set functions "P02 Capacity," "P03 Rated current," and "P06 No-load current," (input of no-load current is not required when P04=2, running the motor at tuning, is selected).
- When tuning the no-load current, disconnect the motor from the load machine, and beware of motor rotation.
- 4. Set 1 (motor stop) or 2 (motor rotation) to function "P04 Tuning." Press the FWD key or REV key, then start tuning simultaneously.

Tuning takes several seconds to several tens of seconds (when 2 is set). (As the motor accelerates up to half the base frequency according to acceleration time, the no-load current is tuned and decelerates according to the deceleration time, the total tuning time varies depending on set acceleration and deceleration times.)

- 5. Press the STOP key after the turning is completed.
- 6. End of procedure

NOTE:

Use function "A13 Motor 2 (Tuning)," to tune motor 2. In this case, functions described in 1. and 2. above are for the function (A01 -) of motor 2.

When the tuning value is set to 2, the motor rotates at a maximum of half the base frequency. Disconnect the motor from the load machine and beware of motor rotation.

3. Function Explanation

■ P05 Motor 1 (On-line Tuning)

M1 TUN2 P05

Long-time operation affects motor temperature and motor speed. On-line tuning minimizes speed variation when motor temperature changes.

Set value		Operation	
0	Inactive		
1	Active		

■ P06 Motor 1 (No-load current)

P06 M1-lo

This function sets the no-load current (exciting current) of motor 1.

- Set value: G11S/P11S: 0.00 to 2000A E11S: 0.00 to 99.9A

■ P07 Motor 1 (%R1 setting)

■ P08 Motor 1 (%X setting)

P07	M1-%R1	
P08	M1-%X	

Write this data when using a motor other than the FUJI standard 3-phase motor and when the motor constant and the impedance between the inverter and motor are known.

Calculate %R1 using the following formula:

$$\% R1 = \frac{R1 + Cable\ R}{V/\left(\sqrt{3} \cdot I\right)} \times 100\ [\%]$$

$$R1 \qquad : \ Primary\ coil\ resistance\ of\ motor\ [\Omega]$$

$$Cable\ R \qquad : \ Output\text{-side\ cable\ resistance\ value\ } [\Omega]$$

٧ : Rated voltage (V) : Motor rated current (A)

Calculate %X using the following formula:

$$\%X = \frac{X1+X2 \cdot XM/(X2+XM)+Cable X}{V/(\sqrt{3} \cdot I)} \times 100 \ [\%]$$

$$X1 : Primary leakage reactance of motor \ [\Omega]$$

X2 : Secondary leakage reactance

(converted to a primary value)of the motor $[\Omega]$

XM : Exciting reactance of motor $[\Omega]$ Cable X : Output-side cable reactance $[\Omega]$

٧ : Rated voltage (V) 1 : Motor rated current (A)

NOTE:

For reactance, use a value based on the data written in "F04 Base frequency 1.'

• When connecting a reactor or filter to the output circuit, add its value. Use value 0 for cable values that can be ignored.

(E11S)

%R1 setting: 0.00 to 50.00Hz %X setting: 0.00 to 50.00Hz

■ P09 Motor 1 (Slip compensation control 1)

SLIP COMP1 P09

Changes in load torque affect motor slippage, thus causing variations in motor speed. The slip compensation control adds a frequency (proportional to motor torque) to the inverter output frequency to minimize variations in motor speed due to torque changes.

- Set value: 0.00 to 15.00Hz

Calculate the amount of slip compensation using the following formula:

Slip compensation amount = Slippage [r/min] Base frequency x-Synchronous speed [r/min]

Slippage = Synchronous speed - Rated speed

■ P10 Motor 1 (Slip compensation response time) (E11S only)

This function sets slip compensation response time.

- Set value: 0.01 to 10.00s

3.5 High Performance Functions

■ H01 Accumulated operation time (E11S only)

This function shows the accumulated operation time.

■ H02 Trip history

(E11S only)

This function shows the trip history.

■ H03 Data initializing (Data reset)

H03 DATA INIT

This function returns all function data changed by the customer to the factory setting data. (initialization).

- Set value 0: Disabled.
 - 1: Initializing data.

To perform initialization, press the STOP and keys together to set 1, then press the LUNC key. The set values of all functions are initialized. The set value in H03 automatically returns to 0 following the end of initialization.

- H04 Auto-reset (Times)
- H05 Auto-reset (Reset interval)

H04 AUTO-RESET

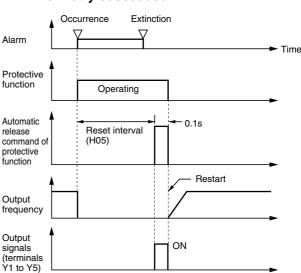
H05 RESET INT

When the inverter protective function which invokes the retry operation is activated, this function releases operation of the protective function and restarts operation without issuing an alarm or terminating output.

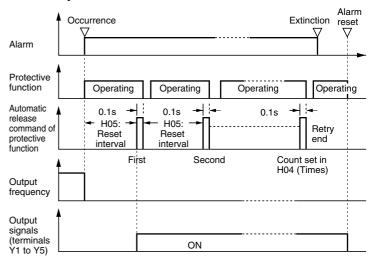
Set the protective function release count and waiting time from its operation startup to release.

- Setting range (Times) : 0, 1 to 10 (Reset interval) : 2 to 20s

Not to use the retry function, set 0 to "H04 Auto-reset (Times)."
• Inverter protective functions that can invoke retry function


OC1, OC2, OC3: Overcurrent	dBH: Braking resistor overheating
OV1, OV2, OV3: Overvoltage	OL1: Motor 1 overload
OH1: Heat sink overheating	OL2: Motor 2 overload
OH3: Inverter inside overheating	OLU: Inverter overload

When the value of "H04 Auto-reset (Times)," is set from 1 to 10, an inverter run command is immediately entered following the wait time set in "H05 Auto reset (Reset interval)," after the startup of the retry operation. If the cause of the alarm has been removed at this time, the inverter starts without switching to alarm mode. If the cause of the alarm still remains, the protective function is reactivated according to the wait time set in "H05 Auto reset (Reset interval)." This operation is repeated until the cause of the alarm is removed. The restart operation switches to alarm mode when the retry count exceeds the value set in "H04 Auto reset (Times)."


The operation of the retry function can be monitored from terminals Y1 to Y5.

(E11S: Y1 and Y2)

■ When retry succeeded

■ If retry failed

When the retry function is selected, operation automatically restarts depending on the cause of the trip stop. (The machine should be designed to ensure safety during a restart.)

■ H06 Fan stop operation

H06 FAN STOP

This function specifies whether cooling fan ON/OFF control is automatic. While power is applied to the inverter, the automatic fan control detects the temperature of the cooling fan in the inverter and turns the fan on or off.

When this control is not selected, the cooling fan rotates continually.

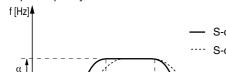
3. Function Explanation

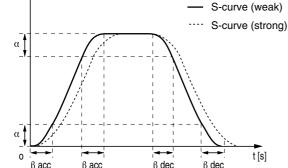
- Set value 0: ON/OFF control disabled.

1: ON/OFF control enabled.

The cooling fan operating status can be monitored from terminals Y1 to Y5. (E11S: Y1 and Y2)

■ H07 ACC/DEC pattern (Mode select)


ACC PTN H07


This function selects the acceleration and deceleration pattern.

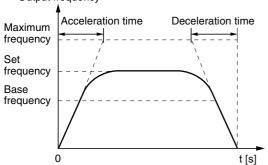
- Set value 0: Inactive (linear acceleration and deceleration)
 - 1: S-curve acceleration and deceleration (weak)
 - 2: S-curve acceleration and deceleration (strong)
 - 3: Non-linear (For variable torque load)

[S-curve acceleration and deceleration]

This pattern reduces shock by mitigating output frequency changes at the beginning/end of acceleration and decelera-

Pattern constants

Output frequency


	When H07=1 (S-curve weak)	When H07=2 (S-curve strong)
Range of S-curve (α)	0.05 x max. frequency (Hz)	0.10 x max. frequency (Hz)
Time for S-curve at acceleration (β acc)	0.10 x accel. time (s)	0.20 x accel. time (s)
Time for S-curve at deceleration (β dec)	0.10 x decel. time (s)	0.20 x decel. time (s)

^{*} When acceleration and deceleration times are very long or short, acceleration and deceleration are rendered linear.

[Non-linear acceleration and deceleration]

This function is used to minimize motor acceleration and deceleration times in the range that includes a constant-output range.

Output frequency

■ H08 Rev. phase sequence lock (G11S/P11S only)

H08 **REV LOCK**

When accidental reversing is expected to cause a malfunction, this function can be set to prevent reversal.

This function prevents a reversing operation resulting from a connection between the REV and CM (P24 for EN) terminals, inadvertent activation of the REV key, or negative analog input from terminal 12 or V1.

- Set value 0: Inactive

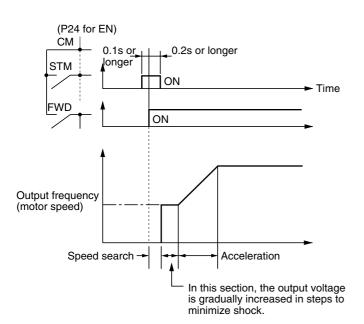
1: Active

■ H09 Start mode (Rotating motor pick up)

H09 **START MODE**

This function smoothly starts the motor which is coasting after a momentary power failure or after the motor has been subject to external force, without stopping motor.

At startup, this function detects the motor speed and outputs the corresponding frequency, thereby enabling a shock-free motor startup. However, the normal startup method is used, when the coasting speed of the motor is 120Hz or more as an inverter frequency and when the value set to "F03 Maximum" frequency 1", exceeds the value set to "F15 Frequency limiter (High)."


- Set value: 0, 1, 2

Set value	Normal startup	Restart after a momentary power failure	Line-to-inverter changeover
0	Inactive	Inactive	Inactive
1	Inactive	Active	Active
2	Active	Active	Active

Explanation of set values

- 1: This function is effective when 3, 4, or 5 is set to "F14" Restart mode after momentary power failure." This function is also effective when operation is switched from the line to the inverter.
 - The motor is started with the same frequency as the current coasting speed.
- 2: In addition to restarting following a momentary power failure and switching between the line and the inverter, this function detects the coasting speed of the motor and starts the motor at the same frequency as all startups (including when an ON operation command is entered).

By assigning value "26 Pick up start mode" to terminals X1 to X9, this function can be externally selected as the normal startup method when an ON operation command is entered.

NOTE: The dotted-dashed line indicates motor speed.

■ H10 Energy-saving operation

H10 ENERGY SAV

When the output frequency is fixed (constant-speed operation) at light loads and value other than 0.0 is set to "F09 Torque boost 1," this function automatically reduces the output voltage, while minimizing the product (power) of voltage and current.

- Set value 0: Inactive

1: Active

NOTES:

- Use this function for variable torque loads (e.g., fans, pumps). When used for a constant-torque load or rapidly changing load, this function causes a delay in control response.
- The energy-saving operation automatically stops during acceleration and deceleration and when the torque limiting function is activated.

■ H11 DEC mode

HII DEC MODE

This function selects the inverter stopping method when a stop command is entered.

 Set value 0: Deceleration-to-stop based on data set to "H07 ACC/DEC pattern"

1: Coasting-to-stop

NOTE:

This function is effective only when a stop command is entered and, therefore, is ineffective when the motor is stopped by lowering the set frequency

■ H12 Instantaneous overcurrent limiting

H12 INST CL

- An overcurrent trip generally occurs when current flows above the inverter protective level following a rapid change in motor load. The instantaneous overcurrent limiting function controls inverter output and prohibits the flow of a current exceeding the protective level even when the load changes.
- As the operation level of the instantaneous overcurrent limiting function cannot be adjusted, the torque limiting function must be used.
- As motor generation torque may be reduced when instantaneous overcurrent limiting is applied, set this function to be inactive for equipment such as elevators, which are adversely affected by reduced motor generation torque, in which case an overcurrent trip occurs when the current flow exceeds the inverter protective level. A mechanical brake should be used to ensure safety.

- Set value 0: Inactive

1: Active

■ H13 Auto-restart (Restart time)

H13 RESTART

Instantaneous switching to another power line (when the power of an operating motor is cut off or power failure occurs) creates a large phase difference between the line voltage and the voltage remaining in the motor, which may cause electrical or mechanical failure. To rapidly switch power lines, write the remaining voltage attenuation time to wait for the voltage remaining in the motor to attenuate. This function operates at restart after a momentary power failure.

- Setting range: G11S/P11S: 0.1 to 10.0s

E11S: 0.1 to 5.0s

When the momentary power failure time is shorter than the wait time value, a restart occurs following the wait time. When the power failure time is longer than the wait time value, a restart occurs when the inverter is ready to operate (after about 0.2 to 0.5s).

■ H14 Auto-restart (Frequency fall rate)

FALL RATE

This function determines the reduction rate of the output frequency for synchronizing the inverter output frequency and the motor speed. This function is also used to reduce the frequency and thereby prevent stalling under a heavy load during normal operation.

- Setting range: 0.00, 0.01 to 100.00Hz/s

When 0.00 is set, the frequency is reduced according to the set deceleration time.

NOTE:

A too large frequency fall rate may temporarily increase the regeneration energy from the load and invoke the overvoltage protective function. Conversely, a rate that is too small extends the operation time of the current limiting function and may invoke the inverter overload protective function.

3. Function Explanation

■ H15 Auto-restart (Holding DC voltage) (G11S/P11S only)

H15 HOLD V

This function is for when 2 (deceleration-to-stop at power failure) or 3 (operation continuation) is set to "F14 Restart mode after momentary power failure ." Either function starts a control operation if the DC link circuit voltage drops below the set operation continuation level.

- Setting range 200V series: 200 to 300V

400V series: 400 to 600V

When power supply voltage to the inverter is high, control can be stabilized even under an excessive load by raising the operation continuation level. However, when the level is too high, this function activates during normal operation and causes unexpected motion. Please contact Fuji electric when changing the initial value.

■ H16 Auto-restart (OPR command self-hold time) (G11S/P11S only)

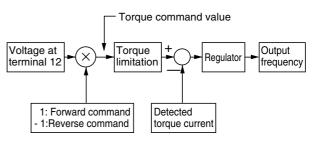
H16 SELFHOLD t

As the power to an external operation circuit (relay sequence) and the main power to the inverter is generally cut off at a power failure, the operation command issued to the inverter is also cut off. This function sets the time an operation command is to be held in the inverter. If a power failure lasts beyond the self-hold time, power-off is assumed, automatic restart mode is released, and the inverter starts operation at normal mode when power is applied again. (This time can be considered the allowable power failure time.)

- Setting range: 0.0 to 30.0s, 999

When 999 is set, an operation command is held (i.e., considered a momentary power failure) while control power in the inverter is being established or until the DC link circuit voltage is about 0.

■ H18 Torque control


(G11S/P11S only)

H18 TRQ CTRL

This function controls motor torque according to a command value.

Set value	Operation
0	Inactive (operation by frequency command)
1	Torque control active A 0 to +10 V analog voltage input to terminal 12 and the direction of rotation (FWD or REV) is used for the torque command value. 0 is used for 0 to -10V.
2	Torque control active A -10 to +10V analog voltage input to terminal 12 and the direction of rotation (FWD or REV) is used for the torque command value.

Torque control block diagram

The torque command value is +200% when the voltage at terminal 12 is +10V and is -200% when the voltage is -10V.

- In torque control, the torque command value and motor load determine the speed and direction of rotation.
- When the torque is controlled, the upper limit of frequency refers to the minimum value among the maximum frequency, the frequency limiter (High) value, and 120Hz. Maintain the frequency at least one-tenth of the base frequency because torque control performance deteriorates at lower frequencies.
- If the operation command goes off during a torque control operation, the operation is switched to speed control and the motor decelerates-to-stop. At this time, the torque control function does not operate.

■ H19 Active drive

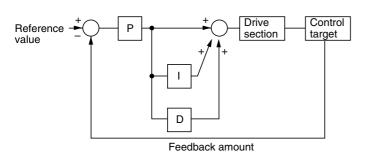
(G11S/P11S only)

H19 AUTO RED

This function automatically extends accelerating time against acceleration operation of 60 seconds or longer to prevent an inverter trip resulting from a temperature rise in inverter due to overcurrent.

- Set value 0: Inactive

1: Active

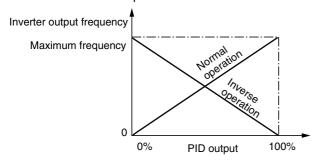

(When the active drive function is activated, the acceleration time is three times the selected time.)

■ H20 PID control (Mode select)

■ H25 PID control (Feedback filter)

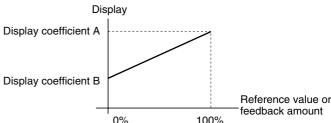
PID control detects the amount of control (feedback amount) from a sensor of the control target, then compares it with the reference value (e.g., reference temperature). If the values differ, this function performs a control to eliminate the deviation. In other words, this control matches the feedback amount with the reference value.

This function can be used for flow control, pressure control, temperature control, and other process controls.



■ H20 PID control (Mode select)

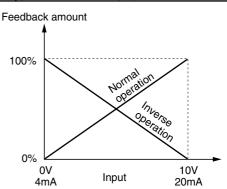
H20 PID MODE


Forward or reverse operations can be selected for PID controller output. This enables motor revolutions to be faster or lower according to PID controller output.

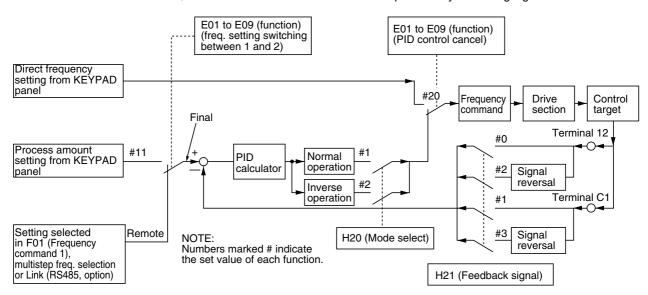
- Set value 0: No operation
 - 1: Normal operation
 - 2: Inverse operation

- The reference value can be entered using "F01 Frequency command 1," or directly from the KEYPAD panel. Select any terminal of Terminals X1 (E01) to X9 (E09) and set value 11 (frequency setting switching). (E11S: X1 (E01) to X5 (E05)) For entry from "F01 Frequency command 1," input an OFF signal to the selected terminal. For direct entry from the KEYPAD panel, turn on the selected terminal.
- For the reference value and feedback amount, the process amount can be displayed according to the values set in "E40

Display coefficient A," and "E41 Display coefficient B."



■ H21 PID control (Feedback signal)

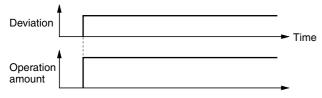

#21 FB SIGNAL

This function selects the feedback amount input terminal and electrical specifications of the terminal. Select a value from the table below according to sensor specifications.

Set value	Descriptions
0	Control terminal 12, normal operation (0 to 10V voltage input)
1	Control terminal C1, normal operation (4 to 20mA current input)
2	Control terminal 12, Inverse operation (10 to 0V voltage input)
3	Control terminal C1, Inverse operation (20 to 4mA current input)

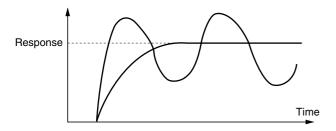
Only positive values can be input for this feedback amount of PID control. Negative values (e.g., 0 to -10V, -10 to 0V) cannot be input, thereby the function cannot be used for a reverse operation by an analog signal.

3. Function Explanation


- H22 PID control (P-gain)
- H23 PID control (I-gain)
- H24 PID control (D-gain)

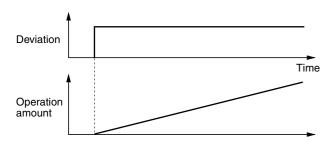
These functions are not generally used alone but are combined like P control. PI control. PD control, and PID control.

• P operation


122 P-GAIN

Operation using an operation amount (output frequency) proportional to deviation is called P operation, which outputs an operation amount proportional to deviation, though it cannot eliminate deviation alone.

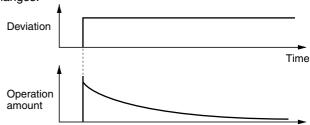
- Setting range: 0.01 to 10.0 times


P gain is the parameter that determines the response level for the deviation of P operation. Although an increase in gain speeds up response, an excessive gain causes vibration, and a decrease in gain delays response.

I operation

H23 I-GAIN

An operation where the change speed of the operation amount (output frequency) is proportional to the deviation is called I operation. I operation outputs an operation amount as the integral of deviation and, therefore, has the effect of matching the control amount (feedback amount) to the reference value (e.g., set frequency), though it deteriorates response for significant changes in deviation.



- Setting range: G11S/P11S: 0.0 (inactive), 0.1 to 9999s E11S: 0.0 (inactive), 0.1 to 3600s "I: integration time" is used as a parameter to determine the effect of I operation. A longer integration time delays response and weakens resistance to external elements. A shorter integration time speeds up response, but an integration time that is too short causes vibration.

D operation

124 D-GAIN

An operation where the operation amount (output frequency) is proportional to the deviation differential is called D operation, which outputs an operation amount as the deviation differential and, therefore, is capable of responding to sudden changes.

- Setting range: 0.00 (Inactive) 0.01 to 10.0s

"D: differential time" is used as a parameter to determine the effect of a D operation. A longer differential time quickly attenuates vibration caused by P operation at the occurrence of deviation. Excessive differential time could cause vibration. Shortening the differential time reduces attenuation at the occurrence of deviation.

PI control

P operation alone does not remove deviation completely. P + I control (where I operation is added to P operation) is normally used to remove the remaining deviation. PI control always operates to eliminate deviation even when the reference value is changed or there is a constant disturbance. When I operation is strengthened, however, the response for rapidly changing deviation deteriorates. P operation can also be used individually for loads containing an integral element.

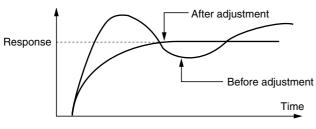
• PD control

If deviation occurs under PD control, an operation amount larger than that of D operation alone occurs rapidly and prevents deviation from expanding. For a small deviation, P operation is restricted. When the load contains an integral element, P operation alone may allow responses to vibrate due to the effect of the integral element, in which case PD control is used to attenuate the vibration of P operation and stabilize responses. In other words, this control is applied to loads in processes without a braking function.

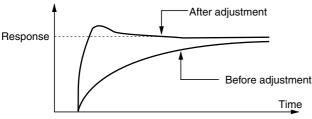
• PID control

PID control combines the P operation, the I operation which removes deviation, and the D operation which suppresses vibration. This control achieves deviation-free, accurate, and stable responses.

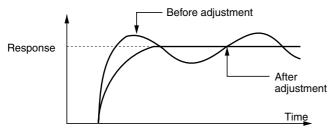
This control is effective for loads for which the time from deviation occurrence to response return is long.

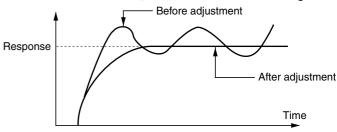

Adjusting PID set value

Adjust the PID value while monitoring the response waveform on an oscilloscope or other instrument if possible. Proceed as follows:


- Increase the value of "H22 (P-gain)" without generating vibration.
- Decrease the value of "H23 (I-gain)" without generating vibration.
- Increase the value of "H24 (D-gain)" without generating vibration.

Adjust the response waveform as follows:


To remove the overshoot, increase the value of "H23 I-gain," then decrease the value of "H24 D-gain."


To stabilize response quickly (i.e., allowing for a little overshoot), decrease the value of "H23 I-gain," or increase the value of "H24 D-gain."

To suppress vibration with a period longer than the value of "H23 I-gain," increase the value of H23.

To suppress vibration with a frequency roughly equivalent to the value "H24 D-gain," decrease the value of H24. If there is residual vibration with 0.0, decrease the value of "H22 P-gain."

■ H25 PID control (Feedback filter)

H25 FB FILTER

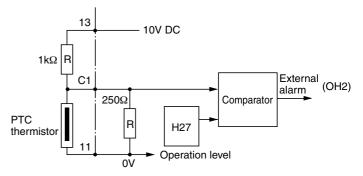
This filter is for feedback signal input from terminal 12 or C1. This filter stabilizes operation of the PID control system. A set value that is too large, however, deteriorates response.

- Setting range: 0.0 to 60.0s

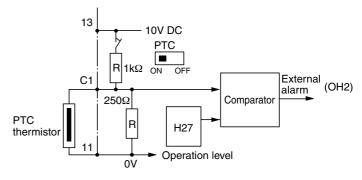
■ H26 PTC thermistor (Mode select)

H26 PTC MODE

Set this function active when the motor has a PTC thermistor for overheat protection.


- Set value 0: Inactive

1: Active


Connect the PTC thermistor as shown in the figure below. The protective function uses the external alarm input to terminals X1 to X9 when selected. The trip mode is activated by "OH2: External alarm input.

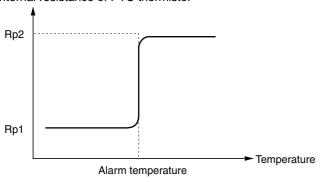
In EN version, turn on switch "PTC" on the control PCB.

JE version

• EN version

3. Function Explanation

■ H27 PTC thermistor (Level)


H27 PTC LEVEL

The voltage input to terminal C1 is compared to the set voltage (operation level). When the input voltage is equal to or greater than the operation level, "H26 PTC thermistor (Mode select)," starts.

- Setting range: 0.00 to 5.00V

The PTC thermistor has its own alarm temperature. The internal resistance value of the thermistor largely change at the alarm temperature. The operation (voltage) level is set using this change in the resistance value.

Internal resistance of PTC thermistor

The figure in "H26 PTC thermistor (Mode select)," shows that resistor 250Ω and the thermistor (resistance value Rp) are connected in parallel. Hence, voltage $\rm V_{\rm C1}$ (operation level) at terminal C1 can be calculated by using the following formula.

$$Vc1= \ \ \frac{\frac{250 \cdot Rp}{250 + Rp}}{1000 + \frac{250 \cdot Rp}{250 + Rp}} \times \ \ 10 \ [V]$$

The operation level can be set by bringing Rp in the Vc1 calculation formula into the following range.

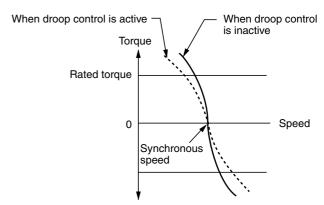
Rp1 < Rp < Rp2

To obtain Rp easily, use the following formula.

$$Rp = \frac{Rp1 + Rp2}{2} [\Omega]$$

■ H28 Droop control

H28 DROOP


When two or more motors drive a single machine, a higher load is placed on the motor rotating the fastest. Droop control achieves a good load balance by applying drooping characteristics to speed against load variations.

Calculate the droop amount using the following formula:

Droop amount =

- Set value: -9.9Hz to 0.0Hz (G11S and E11S only)

Characteristics of the motor

■ H30 Serial link (Function select)

H30 LINK FUNC

The link function (communication function) provides RS485 (provided as standard) and various bus connections (optional). The link function includes:

- 1) Monitoring (data monitoring, function data check)
- 2) Frequency setting
- Operation command (FWD, REV, and other commands for digital input)
- 4) Writing function data
- Setting range: 0 to 3

Communication can be enabled and disabled by a digital input. This function sets the link function when communication is enabled.

Set value	Frequency setting	Operation command
0	Inactive	Inactive
1	Active	Inactive
2	Inactive	Active
3	Active	Active

The data monitoring and function data write functions are always enabled. Disabling communication using digital input brings about the same result as when 0 is set to this function. When the bus option is installed, this setting selects the function of the option and the RS485 interface is restricted to monitoring and writing function data. When the option is not installed, this setting selects the RS485 function.

■ H31 RS485 (Address)

to

■ H39 RS485 (Response interval)

These functions set the conditions of RS485 communication. Set the conditions according to the upstream device. Refer to 4. Communication Specification (RS485) for the protocol.

■ H31 RS485 (Address)

485ADDRESS

This function sets the station address of RS485.

- Setting range: 1 to 31

■ H32 RS485 (Mode select on no response error)

■ H33 RS485 (Timer)

H32 MODE ON ER H33 TIMER

These function set processing at communication error and sets the error processing timer value.

- Setting range: 0 to 3

Set value	Processing at communication error
0	Immediate Er8 trip (forced stop)
1	Continue operation within timer time, Er8 trip after timer time.
2	Continue operation and effect retry within timer time, then invoke an Er 8 trip if a communication error occurs. If an error does not occur, continue operation.
3	Continue operation.

⁻ Setting range: 0 to 60.0s

■ H34 RS485 (Baud rate)

H34 BAUD RATE

This function sets the transmission speed.

- Setting range: 0 to 4

Set value	Transmission speed
0	19200bit/s
1	9600bit/s
2	4800bit/s
3	2400bit/s
4	1200bit/s

■ H35 RS485 (Data length)

H35 LENGTH

This function sets data length.

Set value	Data length
0	8bit
1	7bit

■ H36 RS485 (Parity check)

H36 PARITY

This function sets the parity bit.

Set value	Parity bit	
0	None	
1	Even	
2	Odd	

■ H37 RS485 (Stop bits)

H37 STOP BITS

This function sets the stop bit.

Set value	Stop bit
0	2bit
1	1bit

■ H38 RS485 (No response error detection time)

H38 NO RES t

In a system where the local station is always accessed within a specific time, this function detects that access was stopped due to an open-circuit or other fault and invokes an Er8 trip.

- Setting range: 0 (no detection), 1 to 60 seconds

■ H39 (Response interval)

H39 INTERVAL

This function sets the time from when a request is issued from the upstream device to when a response is returned.

- Setting range: 0.00 to 1.00s
- * Following functions are diagnostic functions for E11S; monitoring only. (For G11S/P11S, these data can be monitored at LCD on the Keypad panel.)
- H40 Maximum temperature of heat sink
- H41 Maximum effective current
- H42 Main circuit capacitor lifetime
- H43 Cooling fan accumulated operation time
- H44 Inverter ROM version
- H45 Keypad panel ROM version
- H46 Option ROM version

3. Function Explanation

3.6 Alternative Motor Parameters

■ A01 Maximum frequency 2

A01 MAX Hz-2

This function sets the maximum frequency for motor 2 output by the inverter. This function operates the same as "F03 Maximum frequency 1." For details, see the explanation for F03.

■ A02 Base frequency 2

A02 BASE Hz-2

This function sets the maximum output frequency in the constant-torque area of motor 2 (i.e., output frequency at rated output voltage). This function operates the same as "F04 Base frequency 1." For details, see the explanation for F04.

■ A03 Rated voltage 2 (at Base frequency 2)

A03 RATED V-2

This function sets the rated value of voltage output to motor 2. This function operates the same as "F05 Rated voltage 1." For details, see the explanation for F05.

■ A04 Maximum voltage 2 (at Maximum frequency 2)

A04 MAX V-2

This function sets the maximum value of the inverter output voltage of motor 2. This function operates the same as "F06 Maximum voltage 1." For details, see the explanation for F06.

■ A05 Torque boost 2

A05 TRQ BOOST2

This function sets the torque boost function of motor 2. This function operates the same as "F09 Torque boost 1." For details, see the explanation for F09.

- A06 Electronic thermal O/L relay for motor 2 (Select)
- A07 Electronic thermal O/L relay for motor 2 (Level)
- A08 Electronic thermal O/L relay for motor 2 (Thermal time constant)

A06	ELCTRN OL2
A07	OL LEVEL2

A08 TIME CNST2

This function sets the function of the electronic thermal O/L relay of motor 2. This function operates the same as F10 to F12, "Electronic thermal O/L relay for motor 1." For details, see the explanations for F10 to F12.

■ A09 Torque vector control 2

A09 TRQVECTOR2

This function sets the torque vector function of motor 2. This function operates the same as "F42 Torque vector control 1." For details, see the explanation for F42.

■ A10 Number of motor 2 poles

A10 M2 POLES

This function sets the number of poles of motor 2 to be driven. This function operates the same as "P01 Number of motor 1 poles." For details, see the explanation for P01.

■ A11 Motor 2 (Capacity)

A11 M2-CAP

This function sets the capacity of motor 2. This function operates the same as "P02 Motor 1 (capacity)." For details, see the explanation for P02. However, the related motor data functions change to "A12 Motor 2 (Rated current)," "A15 Motor 2 (No-load current)," "A16 Motor 2 (%R1 setting)," and "A17 Motor 2 (%X setting)."

■ A12 Motor 2 (Rated current)

A12 M2-Ir

This function sets the rated current of motor 2. This function operates the same as "P03 Motor 1 (Rated current)." For details, see the explanation for P03.

■ A13 Motor 2 (Tuning)

A13 M2 TUN1

This function sets the tuning of motor 2. This function operates the same as "P04 Motor 1 (Tuning)." For details, see the explanation for P04.

■ A14 Motor 2 (On-line tuning)

A14. M2 TUN2

This function sets the on-line tuning of motor 2. This function operates the same as "P05 Motor 1 (On-line tuning)." For details, see the explanation for P05.

■ A15 Motor 2 (No-load current)

A15 M2-lo

This function sets the no-load current of motor 2. This function operates the same as "P06 Motor 1 (No-load current)." For details, see the explanation for P06.

- A16 Motor 2 (%R1 setting)
- A17 Motor 2 (%X setting)

A16 M2-%R1

A17 M2-%X

These functions set %R1 and %X of motor 2. This function operates the same as "P07 Motor 1 (%R1 setting)," and "P08 Motor 1 (%X setting)." For details, see the explanations for P07 and P08.

■ A18 Motor 2 (Slip compensation control)

A18 SLIP COMP2

This function sets the amount of slip compensation for motor 2. This function operates the same as "P09 Motor 1 (Slip compensation control 1)." For details, see the explanation for P09.

■ A19 Motor 2 (Slip compensation response time) (E11S only)

This function sets slip compensation response time for motor 2. This function operates the same as "P10 Motor 1 (Slip compensation response time)". For details, see the explanation for P10.

4. Standard RS485 Interface

4. Standard RS485 Interface

Foreword

This section describes the communication specification when the inverter FRENIC5000G11S/P11S and FVR-E11S series is controlled through serial transmission from a host unit such as personal computer or PLC. Read this section and the instruction manual of the inverter, understand the treatment method before use, and use this unit correctly. Misuse may result in abnormal operation or cause troubles and reduction of life.

Caution for safety instructions

Be sure to read carefully this section before installation, connection (wiring), operation, maintenance and inspection, and use correctly.

Use this unit after mastered all of the knowledge of the unit, information of safety and attentions.

In this section, the ranks of safety messages are classified as follows:

Warning

Denotes operating procedures and practices that may result in personal injury or loss of life if not correctly followed.

CAUTION

Denotes operating procedures and practices that, if not strictly observed, may result in damage to, or destruction of the equipment.

Even if the items in the caution, they may cause serious results under the circumstances. Since the items have important contents, be sure to follow to the cautions.

Wiring

Warning

- Be sure to wire after power supply off.

There is a fear of electric shock.

CAUTION

- This cannot connect with RS422A interface. (Since this can do only one way communication, the response cannot be received.)

There is a fear of damage.

Operation

Warning

- Be sure to check no run command because of sudden start when valid/invalid communication is changed over, while a run command through RS485 or external signal terminals is remained. There is a fear of failure.
- Be sure to check no run command because of sudden restart when the alarm is reset while a run command through RS485 is remained.

There is a fear of failure.

- There is possibility that stop command through RS485 cannot be recognized when a communication error causes while operating through RS485. Be sure that an emergency stop is made possible by using forced stop of the external signal terminal (BX).

There is a fear of failure.

Microsoft, MS-DOS and Windows are the registered trade marks of Microsoft Corporation in USA and other countries. The other company names and product names in this section are the trade marks or registered trade marks of each company.

4.1 Outline

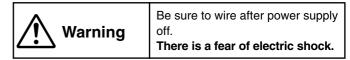
4.1.1 Features

- A host unit can be connected up to 31 inverters.
- Because a common protocol for FRENIC5000G11S/P11S and FVR-E11S series is adopted, the similar program in host unit can operate all inverters of the series. (The parameter specifications may differ for each unit type.)
- Because adopting the transmission frame of fixed length, the program on the host is facilitated.
- The optional transmission frame can shorten the communication time for the operation commands and setting frequency required high response.

4.1.2 Function overview

Function Remarks					
	Function				
Operation command	- Forward command (FWD) and Reverse command (REV) - Digital input command (X1 – X9) - Reset command (RST)	By specific communication functions (S code)			
Frequency setting	Can select 2 methods ± 20000/maximum frequency - Frequency (min. unit: 0.01Hz) Without polarity				
Operating condition monitor	 Setting frequency Output frequency, torque calculation value, torque current, input power, output current and output voltage Operation state and Y1 – Y5 condition 	By specific communication functions (M code)			
Mainte- nance data monitor	Operation time and DC link circuit voltage Life (main circuit capacitor, capacitors on control PCB and cooling fan) Type code, capacity code and ROM version				
Alarm data monitor	- Alarm history (newest – former 3 times) monitor - Information monitor at occurring new alarm. Operation information (Output frequency, setting frequency, torque calculation value, torque current, input power, output current and output voltage) Operation state and universal output terminals Maintenance (integrated operation time, DC link circuit voltage, internal air temperature in inverter and fin temperature)				
Function data	- All function data can be monitored and changed. (However, the functions related to RS485 communication cannot be changed.)	By standard functions			

4.2 Transmission specification


	<u> </u>
Physical level	EIA RS485 (A unit with an RS232C
•	interface reqires a converter)
Transmission distance	500 m max.
Recommended cable	24AWG shielded twisted-pair cable
Number of connect- able units	Host: 1, Inverter: 31 (station address: 01–31, broadcast: 99)
Transmission speed	19200, 9600, 4800, 2400, 1200 [bits/s]
Synchronization method	Start - stop synchronization
Transmission mode	Half duplex
Transmission protocol	Polling/selecting, broadcast
Character code	7-bit ASCII
Data length	8 bits, 7 bits selectable
Stop bit length	1 bit, 2 bits selectable
Frame length	Standard frame: 16 bytes fixed, Option frame: 8 bytes, 12 bytes
Parity	Non, even parity, odd parity selectable
Error check	BCC (check sum), overrun error, frame error

4.3 Connection

4.3.1 Connection method

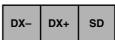
4.3.1.1 FRENIC5000G11S/P11S series

Use shielded wires (Recommended cable: Refer to 4.2. Transmission specification) and connect the wires between the control terminals (DX+(DXA), DX-(DXB) and SD) of the inverter and the host unit so as to surely become drawing in one stroke.

This cannot connect with RS422A interface. (Because this can do only one way communication, the response cannot be received.) There is a fear of damage.

- Shorten the wiring as possible to be hard against noise influence.
 Connection with RS232C units uses a communication level converter on the market.

Control terminals (only for communication)


Terminal marking	Terminal name	Function description		
DX+ (DXA)	RS485 communication data (+)	Input/output terminals for RS485 communication. Max. 31		
DX- (DXB)	RS485 communication data (–)	inverters can be connected by multi-drop connection.		
SD	For connection to communication cable sheath	Connecting shielded wire of cable. Electrically floating		

(Refer to "4.11.1 Communication level converter").

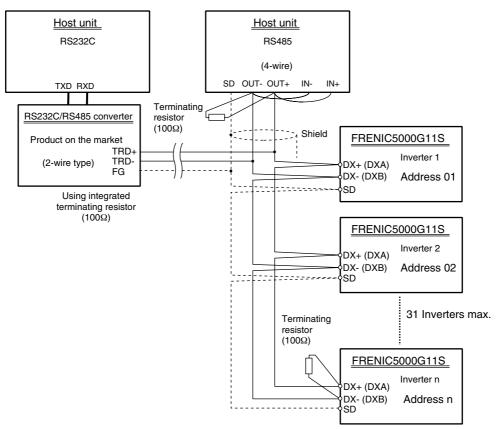
3) Assign the different station address to the inverters.

Control terminal arrangement

In detail, refer to "Connection" of the instruction manual of **EN version** JE version inverter.

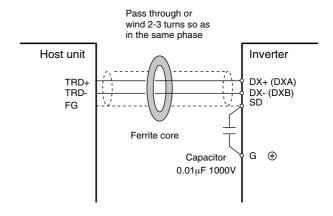
4. Standard RS485 Interface

4.3.1.2 FVR-E11S Series


Use shielded wires (Recommended cable: Refer to 4.2. Transmission specification) and remove the keypad panel, connect the cable to the connector, and change over the SW2 on the control PC board. (If this is not changed, RS485 communication is not available.)

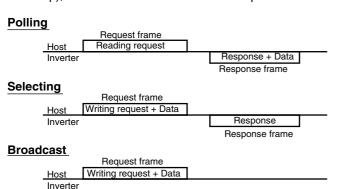
4.3.2 RS485

RS485 interface is used when performing multi-drop bidirectional communication. The input/output terminals are provided for 2-wire and 4-wire connections. Either unit of the connections can be used (using as 2-wire connection).


Type	Description	Example of terminals
2-wire connec- tion	Input and output (driver and receiver) are internally connected.	TRD+ Differential input terminal (hot side) TRD Differential output terminal (common side) FG Frame ground
4-wire connection	Input and output (driver and receiver) are separated.	IN+, IN Differential input terminal OUT+, OUT Differential output terminal SD Signal ground

4.3.3 Example of connection of FRENIC5000G11S/P11S series

4.3.4 Example of noise prevention


The malfunction such as communication error may be occured by the noise generated the inverter. In such case, connect ferrite core or capacitor.

4.4 Transmission method

The polling/selecting system is applied to the response message feature. The inverter is always waiting the selecting (writing request) and polling (reading request) from the host unit.

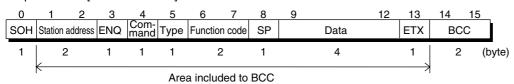
When the inverter receives a request frame from the host during waiting state and judges for it to be a correct receiving, the inverter processes for the request and returns an affirm response frame (in a case of polling, returning the data together with the affirm response frame). If judging it not to be normally received, the inverter returns a negative response frame. Further, in a case of broadcast (selecting all terminals in a lump), the inverter does not return the response.

Description) Broadcast (selecting one lump of all terminals) A frame set with station address of 99 is treated by all inverters as broad cast. By using broadcast, operation commands and frequency command can be give all the inverters in a lump. (The writing of S01 - S06 ['W', 'E' commands] in the standard frame and 'a' - 'f' and 'm' commands in the option frame are only valid.)

4.4.1 Transmission frame

In the transmission frames, there are standard frames that can use all communication functions and option frames that are limited to the command and monitoring to inverter but can perform high-speed communication.

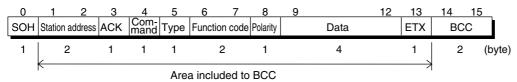
In both standard frame and option frame, all characters (including BCC) configuring the frame is expressed with ASCII code.


The lengths of transmission frames become shown in the following table.

	Frame length		
Standard frame	Standard frame Selecting		16 bytes
		Response	16 bytes
	Polling	Request	16 bytes
		Response	16 bytes
Option frame Selecting		Request	12 bytes
		Response	8 bytes
	Polling	Request	8 bytes
		Response	12 bytes

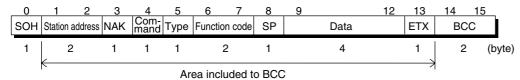
4. Standard RS485 Interface

(1) Standard frame


Request frame [Host ⇒ Inverter]

Byte	Field	Value		Description
		ASCII type	Hexadecimal	
0	SOH	SOH	01н	Start of header
1	Station address	'0'-'3', '9'	30н-33н, 39н	Station address of inverter (Decimal: x 10)
2		'0'-'9'	30н-39н	Station address of inverter (Decimal: x 1)
3	ENQ	ENQ	05н	Transmission request
4	Command	'R' 'W' 'A' 'E'	52н 57н 41н 45н	Request command Polling (reading) Selecting (writing) High-response selecting (writing)*1 Alarm reset
5	Туре	F E C P H A O S M	46н 45н 43н 50н 48н 41н 6Fн 53н 4Dн	Function type Fundamental Functions Extension Terminal Functions Control Functions of Frequency Motor Parameters High performance Functions Alternative Motor Parameters Optional Functions Setting data Functions Monitoring data Functions
6	Function code	'0'-'4'	30н-34н	Function code (Decimal: x 10)
7		'0-'9'	30н-39н	Function code (Decimal: x 1)
8	SP	1 1	20н	Not use (fixed space)
9	Data	'0'-'F'	30н-3Гн	1st character of data (Hexadecimal: x 1000н)
10		'0'-'F'	30н-3Гн	2nd character of data (Hexadecimal: x 100H)
11		'0'-'F'	30н-3Fн	3rd character of data (Hexadecimal: x 10н)
12		'0'-'F'	30н-3Fн	4th character of data (Hexadecimal: x 1н)
13	ETX	ETX	03н	End of text
14	BCC	'0'-'F'	30н-3Fн	Check sum 1 (Hexadecimal: x 10н)
15		'0'-'F'	30н-3Fн	Check sum 2 (Hexadecimal: x 1 _H)

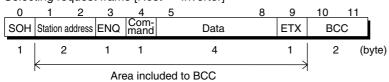
NOTE:
*1) This is used to read out the monitor during writing a function taking for long time (several seconds) (see time out list of "4.4.3 Procedure on host side"). The response of the inverter is not returned till finish of writing of the inverter by the normal writing command 'W', but, since the inverter immediately returns at the time point of receiving the writing request under the high speed response command 'A', the communication can continue even during writing. To judge the finish of writing, call BUSY flag during writing (M14: 15th bit). If trying to newly write during writing, NAK response (error during writing) is issued.


ACK response frame [Inverter ⇒ Host]

Byte	Field	V	alue	Description	
-		ASCII type	Hexadecimal		
0	SOH	SOH	01н	Start of header	
1	Station address	'0'-'3', '9'	30н-33н, 39н	Station address of inverter (Decimal: x 10)	
2		'0'-'9'	30н-39н	Station address of inverter (Decimal: x 1)	
3	ACK	ACK	06н	Transmission request Acknowledge: When there are no receiving error and logical error of the request	
4	Command	'R' 'W' 'A' 'E'	52н 57н 41н 45н	Request command Polling (reading) Selecting (writing) High-response selecting (writing) Alarm reset	
5	Туре	ĿĿĢĿĦĸ	46н 45н 43н 50н 48н 41н 6Fн 53н 4Dн	Function type Fundamental Functions Extension Terminal Functions Control Functions of Frequency Motor Parameters High performance Functions Alternative Motor Parameters Optional Functions Setting data Functions Monitoring data Functions	
6	Function code	'0'-'4'	30н-34н	Function code (Decimal: x 10)	
7		'0-'9'	30н-39н	Function code (Decimal: x 1)	
8	Polarity	() (2	20н 2Dн	Polarities of M09 and M35 data Positive data, normal data (except M09 and M35) negative data	
9	Data	'0'-'F'	30н-3Гн	1st character of data (Hexadecimal: x 1000н)	
10		'0'-'F'	30н-3Гн	2nd character of data (Hexadecimal: x 100н)	
11		'0'-'F'	30н-3Гн	3rd character of data (Hexadecimal: x 10н)	
12		'0'-'F'	30н-3Гн	4th character of data (Hexadecimal: х 1н)	
13	ETX	ETX	03н	End of text	
14	BCC	'0'-'F'	30н-3Гн	Check sum 1 (Hexadecimal: x 10н)	
15		'0'-'F'	30н-3Fн	Check sum 2 (Hexadecimal: x 1н)	

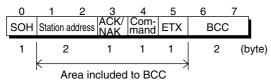
4. Standard RS485 Interface

NAK response frame [Inverter \Rightarrow Host]



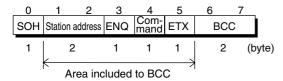
Byte	Field	V	alue	Description					
		ASCII type	Hexadecimal						
0	SOH	SOH	01н	Start of header					
1	Station address	'0'-'3', '9'	30н-33н, 39н	Station address of inverter (Decimal: x 10)					
2		'0'-'9'	30н-39н	Station address of inverter (Decimal: x 1)					
3	NAK	NAK	15н	Transmission response Negative acknowledge: When there is a logical error in the request					
4	Command*1	'R' 'W' 'A' 'E'	52н 57н 41н 45н	Answer back to request command Polling (reading) Selecting (writing) High-response selecting (writing) Alarm reset					
5	Type*1	F E C P H A O S M	46н 45н 43н 50н 48н 41н 6Fн 53н 4Dн	Function type Fundamental Functions Extension Terminal Functions Control Functions of Frequency Motor Parameters High performance Functions Alternative Motor Parameters Optional Functions Setting data Functions Monitoring data Functions					
6	Function code*1	'0'-'4'	30н-34н	Function code (Decimal: x 10)					
7		'0-'9'	30н-39н	Function code (Decimal: x 1)					
8	SP	1 1	20н	Not use (fixed space)					
9	Data	1 1	20н	Not use (fixed space)					
10		1 1	20н	Not use (fixed space)					
11		'4', '5'	34н,35н	Communication error code (Hexadecimal: x 10 _H)					
12		'0'-'F'	30н-3Fн	Communication error code (Hexadecimal: x 1H)					
13	ETX	ETX	03н	End of text					
14	BCC	'0'-'F'	30н-3Гн	Check sum 1 (Hexadecimal: x 10н)					
15		'0'-'F'	30н-3Fн	Check sum 2 (Hexadecimal: x 1 _H)					

NOTE: *1) In case of the transmission format error and transmission command error, spaces (' '= 20H) are set.

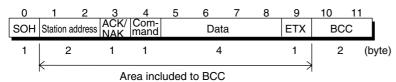

(2) Option frame

Selecting request frame [Host \Rightarrow Inverter]

Byte	Field	V	alue	Description					
		ASCII type	Hexadecimal	1					
0	SOH	SOH	01н	Start of header					
1	Station address	'0'-'3', '9'	30н-33н, 39н	Station address of inverter (Decimal: x 10)					
2		'0'-'9'	30н-39н	Station address of inverter (Decimal: x 1)					
3	ENQ	ENQ	05н	Transmission request					
4	Command	'a' 'e' 'f' 'm'	61н 65н 66н 6Dн	Request command Frequency setting (p.u.) Frequency setting Operation command Alarm reset					
5	Data	'0'-'F'	30н-3Гн	1st character of data (Hexadecimal: x 1000н)					
6		'0'-'F'	30н-3Гн	2nd character of data (Hexadecimal: x 100н)					
7		'0'-'F'		3rd character of data (Hexadecimal: x 10н)					
8		'0'-'F'	30н-3Fн	4th character of data (Hexadecimal: х 1н)					
9	ETX	ETX	03н	End of text					
10	BCC	'0'-'F'	30н-3Fн	Check sum 1 (Hexadecimal: x 10н)					
11		'0'-'F'	30н-3Гн	Check sum 2 (Hexadecimal: x 1 _H)					


Selecting response frame [Inverter \Rightarrow Host]

Byte	Field	Va	alue	Description						
		ASCII type	Hexadecimal							
0	SOH	SOH	01н	Start of header						
1	Station address	'0'-'3', '9'	30н-33н, 39н	Station address of inverter (Decimal: x 10)						
2		'0'-'9'	30н-39н	Station address of inverter (Decimal: x 1)						
3	ACK/NAK	ACK NAK	06н 15н	Transmission response Acknowledge: When there are no receiving error and logical error Negative Acknowledge: When there is a logical error in the request						
4	Command	'a' 'e' 'f' 'm'	61н 65н 66н 6Dн	Request command Frequency setting (p.u.) Frequency setting Operation command Alarm reset						
5	ETX	ETX	03н	End of text						
6	BCC	'0'-'F'	30н-3Fн	Check sum 1 (Hexadecimal: x 10 _H)						
7		'0'-'F'	30н-3Гн	Check sum 2 (Hexadecimal: x 1H)						


4. Standard RS485 Interface

Polling request frame [Host ⇒ Inverter]

Byte	Field	Va	alue	Description
		ASCII type	Hexadecimal	
0	SOH	SOH	01н	Start of header
1	Station address	'0'-'3', '9'	30н-33н, 39н	Station address of inverter (Decimal: x 10)
2		'0'-'9'	30н-39н	Station address of inverter (Decimal: x 1)
3	ENQ	ENQ	05н	Transmission request
4	Command	'g' 'h' 'ï' 'j' 'k'	67н 68н 69н 6Ан 6Вн	Request command Output frequency (p.u.) Torque Torque current Output frequency Operation state monitor
5	ETX	ETX	03н	End of text
6	BCC	'0'-'F'	30н-3Fн	Check sum 1 (Hexadecimal: x 10 _H)
7		'0'-'F'	30н-3Fн	Check sum 2 (Hexadecimal: х 1н)

Polling response frame [Inverter ⇒ Host]

Byte	Field	Field Value		Description					
		ASCII type	Hexadecimal						
0	SOH	SOH	01н	Start of header					
1	Station address	'0'-'3', '9'	30н-33н, 39н	Station address of inverter (Decimal: x 10)					
2		'0'-'9'	30н-39н	Station address of inverter (Decimal: x 1)					
3	ACK/NAK	ACK NAK	Transmission response Acknowledge: When there are no error and logical er 15н Negative Acknowledge: When there is a log in the request						
4	Command	'g' 'h' 'ï' 'j' 'k'	67н 68н 69н 6Ан 6Вн	Request command Output frequency (p.u.) Torque Torque current Output frequency Operation state monitor					
5	Data	'0'-'F'	30н-3Гн	1st character of data (Hexadecimal: x 1000н)					
6		'0'-'F'	30н-3Гн	2nd character of data (Hexadecimal: x 100н)					
7		'0'-'F'	30н-3Fн	3rd character of data (Hexadecimal: x 10н)					
8		'0'-'F'	30н-3Fн	4th character of data (Hexadecimal: x 1н)					
9	ETX	ETX	03н	End of text					
10	BCC	'0'-'F'	30н-3Fн	Check sum 1 (Hexadecimal: x 10 _H)					
11		'0'-'F'	30н-3Fн	Check sum 2 (Hexadecimal: х 1н)					

(3) Negative response frame

As for a response frame changing its length depending on the command sort, it is made basic to respond with the frame length specified by the command if the command sort character is normally recognized.

No.	Frame/command sort	Cause of the error	Negative response frame	Error code (M26)		
1	Standard frame Option frame	Could not detect ENQ at the specified position.	Standard frame (16 bytes length)	Format error [74]		
2	Other than specified commands	Detected other than specified commands (R, W, A, E, a - k, m).	Standard frame (16 bytes length)	Command error [75]		
3	Selecting command (a - f, m)	Could not detect ETX at the specified position.	Option frame (8 bytes length)	Format error [74]		
4	Polling command (g - k)	Could not detect ETX at the specified position.	Option frame (12 bytes length)	Format error [74]		

Note:

When returning the negative response of format error or command error in the standard frame as in No. 1 and 2, the contents of the command sort, function sort and function number field become indefinite.

4.4.2 Field description

(1) Data field

Standard frame

8	8 9		11	12		
Special added data	1st character	2nd character	3rd character	4th character		

Option frame

5	6	7	8
1st character	2nd character	3rd character	4th character

All data except partial special data are treated with 16 bits length. In the data field of communication frame, data use hexadecimal notation (0000_{H} - FFFF_H) and each figure is expressed with ASCII code. Further, in case of negative integer data (data with sign), minus data are produced by taking the two's complement.

In the standard frame, 1 byte of a special adding data is provided in addition to 4 bytes of the data field, and minus ('-') is set only when communicating negative data exceeding 16 bits length (output frequency of M09 and M35 in reverse rotation).

Notes:

- Make all A F of hexadecimal capital letters.
- When polling, send with setting zero ('0') in all data field of the request frame.
- When selecting, the data field of the ACK response field becomes indefinite.

Example)

When setting 108.5Hz in the function S01 (frequency command) (maximum frequency: 120Hz).

 Calculate setting value according to the data format of S01 (20,000/max. frequency)

Data = 108.5Hz x $\pm 20,000/120$ Hz

(+in forward rotation, - in reverse rotation)

- $= \pm 18083.3$
- $\approx \pm 18083$

- 2) Convert the data to hexadecimal (If the data is negative, take the two's complement).
 - Data = 18083 (in forward rotation)
 - = 46A3_H
 - Data=-18083(in reverse rotation)
 - = 0-18083 = 65536-18083 = 47453
 - = B95DH
- 3) Set data

Position	Setting value (Forward)	Setting value (Reverse)
1st character of data	ASCII '4'	ASCII 'B'
2nd character of data	ASCII '6'	ASCII '9'
3rd character of data	ASCII 'A'	ASCII '5'
4th character of data	ASCII '3'	ASCII 'D'

(2) Check sum field

These data are to check for error in the communication frame when transmitting data. The calculation method is to express the data in ASCII code, which data are the lowest 1 byte of the sum of every 1 byte in the data field except SOH and check sum.

Example) When the added result is 0123H

Position	Setting value
Check sum 1	ASCII '2'
Check sum 2	ASCII '3'

4. Standard RS485 Interface

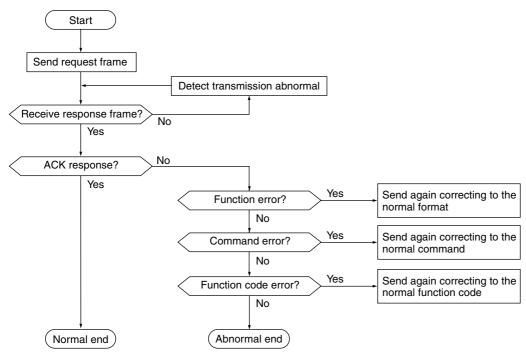
4.4.3 Procedure on the host side

As for the communication procedure of frames, follow the flow chart of each procedure.

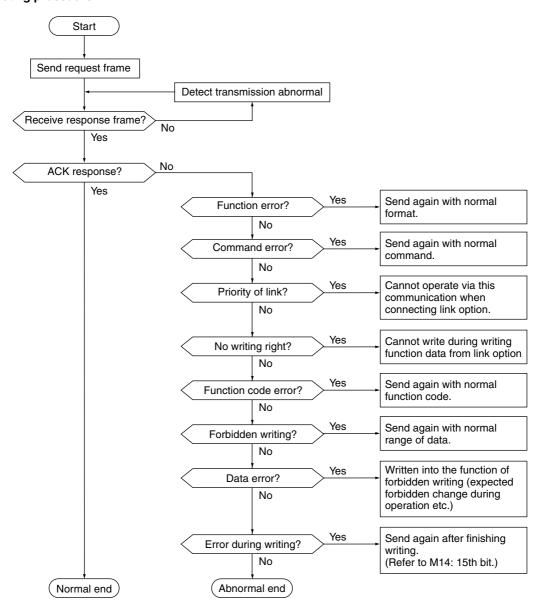
Be sure to send next frame after recognizing the response in both writing and reading. If response from the inverter does not return exceeding a definite time, judge as time-out and execute retry. (When stating retry before time-out, the request frame cannot be normally received.)

Time-out

Command	Treatment	Time-out	Remarks
R	Reading all	0.1s	
W	Writing function data (S08 -S11)	1s	
	Writing function data	10s	Data initializing (H03) Auto-tuning (P04, A13)
		1s	Functions except above
	Other writing	1s	
Α	Writing function data (S08 - S11)	1s	
	Writing function data		
E	Alarm reset	1s	
a-f, m	Selecting (option frame)	1s	
g-k	Polling (option frame)	0.1s	


Note: Since the time described above is not the guaranteed response time, but is surely the time of time-out for detecting abnormal, the response is returned earlier than that time.

Description) Retry


In the retry treatment, it is confirmed either to send the former data before no response again or to obtain a normal response by polling (M26) for reading out the error content. (When confirming, it is necessary to judge time-out again or not.) In a case of normal response, since this shows any transiently abnormal transmission by noise etc., the communication can be normally performed after this. (If this phenomena frequently occurs, investigation is necessary since there is a possibility of any abnormality.)

In a case of no response again, retry further. When the times of retrying exceed the pre-determined value (normally about 3 times), the problem in the hardware and the software of the upstream unit is expected. The investigation is necessary after abnormal ending as no response of the designated station.

(1) Polling procedure

(2) Selecting procedure

4. Standard RS485 Interface

4.4.4 Example of communication

Typical examples of communication are shown as follows. (The station address are made 12.)

(1) Standard frame

[1] S05: Selecting frequency command (writing)

Request frame (host ⇒ inverter) 40.00 Hz command															
SOH	1	2	ENQ	W	S	0	5	SP	0	F	Α	0	ETX	8	1
ACK i	ACK response frame (inverter ⇒ host)														
SOH	1	2	ACK	W	S	0	5	SP	0	F	Α	0	ETX	8	2

NAK response frame (inverter \Rightarrow host) Priority of link error SOH 1 2 NAK W S 0 5 SP 0 0 4 C ETX 8

1

[2] M09: Polling output frequency (reading)

Request frame (host ⇒ inverter)

SOH 1 2 ENQ R M 0 9 SP 0 0 0 ETX 5 3

ACK response frame (inverter \Rightarrow host) 30.00Hz

SOH 1 2 ACK R M 0 9 SP 0 B B 8 ETX 8 0

(2) Option frame

[1] Selection operation command (writing)

Request frame (host ⇒ inverter) FWD command												
SOH	1	2	ENQ	f	0	0	0	1	ETX	9	2	

ACK response frame (inverter ⇒ host)

SOH	1	2	ACK	f	ETX	D	2

NAK response frame (inverter \Rightarrow host) Cause of error can be confirmed with "M26: Transmission abnormal treatment code"

SOH 1 2	NAK f	ETX E	1
---------	-------	-------	---

[2] Polling actual torque value (reading)

Request frame (host \Rightarrow inverter)

SOH 1 2 ENQ h ETX D 3

ACK response frame (inverter ⇒ host) 85.00%

SOH 1 2 ACK h 2 1 3 4 ETX 9 E

[3] Selecting operation command in broadcast (writing)

Request frame (host \Rightarrow inverter) REV command SOH 9 9 ENQ f 0 0 0 2 ETX A 2

The response is not returned in broadcast,

4.4.5 Communication error

The errors detected by inverter as relating to communication are roughly categorized into transmission error, logic error and communication interrupt error, and the treatment at detecting error differs respectively.

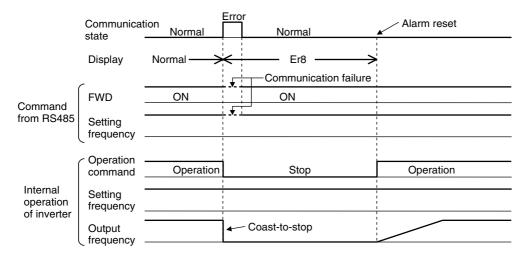
At detecting the transmission error (error codes 71 - 73), the information using with a negative response frame is not performed. This is to avoid to be respond by plural inverters. At detecting the logic error (error codes 74 - 81), the information using with a negative response frame is performed. Because the negative response informs the cause (content of the error), perform the treatment (see "4.4.3 Procedure on the host side") according to the content. However, in a case of the option frame, the cause is not informed because of a frame configuration of prior processing speed and having no frame to send the cause. If necessary to treat the error every cause, the cause can be confirmed by reading in M26 in the standard frame. (In M26, the newest communication error code is stored.)

(1) Communication error code

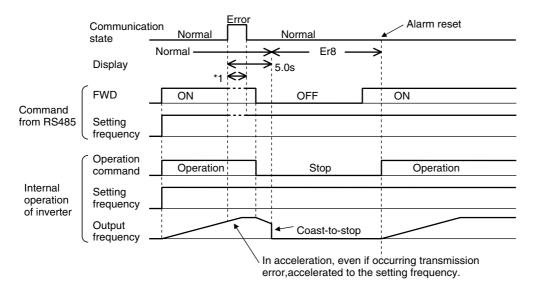
Error code	Error name	Description
71 (47н)	Check sum error	Not matching check sum values in the frame for own station.
72 (48н)	Parity error	Not matching the parities
73 (49н)	Other error	Received error other than the above errors
74 (4Ан)	Format error	Incorrect transmission request character The characters of end of text are not in the specified position.
75 (4Вн)	Command error	Not existing command is sent.
76 (4C _H)	Priority of link error	Intending to write operation command in the state mounted a link option(If a link option has been mounted, the command data and operation command cannot be written through RS485.)
77 (4Dн)	Error of no writing right	Intending to write new function data during writing from a link option
78 (4Ен)	Function code error	Requesting not existing function code
79 (4Fн)	Error of forbidden writing	Intending to write the function of forbidden writing or function of forbidden writing in operation during operation.
80 (50н)	Data error	Writing data exceeded an available range of writing.
81 (51н)	Error during writing	Intending to write new function data during writing a function.

(2) Action at communication error

In case of occurring transmission errors (8 times continual) or transmission interruption error, the following actions can be selected. However, if not receiving the first SOH ((normal data) after switching on of inverter power supply or not operating by the communication (frequency command/ operation command), the error action is not performed.

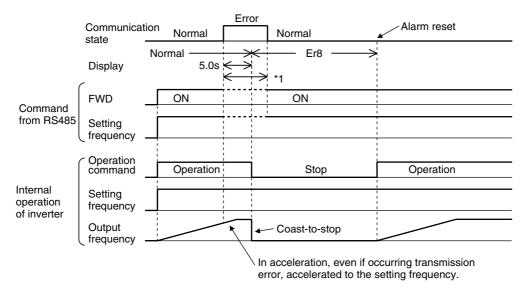

1) Selecting action when occurring error (H32)

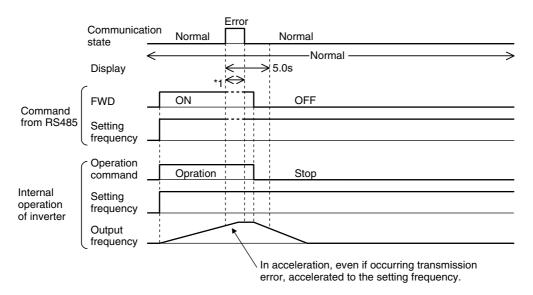
H32	Action at occurring error	Remarks	
0	Immediate forced stop	Er8	
1	Continue operation within H33 time and stop	Er8	Keep the command just before the
2	Continue operation till restoration of the communication, and follow to designation of communication. However, when not restoring after H33 time, immediate forced stop	Er8	error within H33 time, but when restoring, operate following to the designation of communication.
3	Continue operation till restoration of the communication, and after the restoration, follow to designation of communication.	Automatic restoration after restoring communication	


2) Setting time of timer at occurring error (H33) 0.0 - 60.0s

4. Standard RS485 Interface

In a case of H32=0 (Mode of immediate forced stop at occurring communication error)

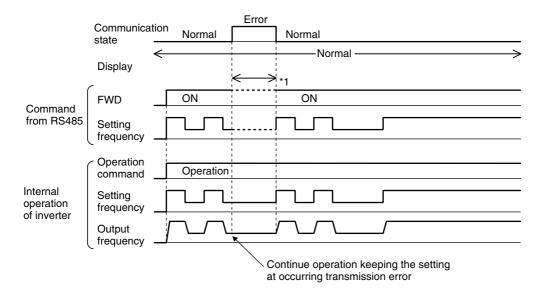

In a case of H32=1, H33=5.0s (Mode of immediate forced stop after 5s at occurring communication error)


NOTE:

*1) In a period until restoring the communication, the commands (command data and operation data) just before the error are kept.

In a case of H32=2, H33=5.0s (The communication does not restore after elapsing 5s from occurring error, and inverter trips Er8.)

In a case of H32=2, H33=5.0s (A communication error occurs, but restored within 5s.)



NOTE:

*1) In a period until restoring the communication, the commands (command data and operation data) just before the error are kept.

4. Standard RS485 Interface

In a case of H32=3 (When a communication error occurs, the operation continues)

There is possibility that stop command through RS485 cannot be recognized when a communication error causes while operating through RS485. Be sure that an emergency stop is made possible by using emergency stop of the external signal terminal (BX).

There is a fear of failure.

[1] Transmission error

In case of occurring transmission errors (communication error codes 71 - 73) 8 times continually, error action is performed as communication error.

- 1) Increment conditions of transmission error counter
 - When a frame for own station
 - Communication error code 71
 - When a receiving error (parity, framing, over run) occurs Communication error codes 72, 73

(Because error receiving is limited to once per frame, the errors occurring after errors of 15 times are not counted till receiving next SOH)

 Clearing condition of transmission error counter When a check sum check of the frame for own or other station was normal

[2] Communication interruption error

When the communication by this protocol stops, error action is performed as communication error.

- Setting time of communication interruption detection (H38)
 (no detection), 1 60s
- Clearing condition of communication interruption detection When a check sum check of the frame for own or other station was normal

NOTE:

1) In a period until restoring the communication, the commands (command data and operation data) just before the error are kept.

4.5 Functions specific for communication

To operate the inverters or to monitor the state via communication, the following functions are specifically available for communication in addition to the functions for parameter change of the inverters. These functions adopted the common data format applicable to the types on and after G11/P11 series, so that it is possible to access to the different type by the same program on the host side.

4.5.1 Command data

Code	Name	Unit	Variable range	Min. unit	Read/write	
S01	Setting frequency (p.u.)	-	-20000 to +20000 (Maximum frequency at ±20000)	1	R/W	
S05	Setting frequency	Hz	0.00 to 400.00 (P11S: 0.00 to 120.00)	0.01	R/W	

Note:

- If both S01 and S05 are set (Data writing except 0), command of S01 becomes valid.
- The data writing exceeding the setting range is possible, but the actual action will be restricted within the inverter.
- 3) When the command data shown here are read, it is not the command data of actual action but the command data communicated before (the final command data can be obtained by reading of the monitoring data described later).

4.5.2 Operation command data

Code	Name	Unit	Variable range	Min. unit	Read/write
S06	Operation command	-	Refer to the data format [14]	-	R/W
S07	Universal Do	-	Refer to the data format [15]	-	R/W
S12	Universal Ao	-	-20000 to +20000 (100% output at ±20000)	1	R/W

Be sure to check no run command because of sudden start when the alarm is reset while a run command through RS485 is remained.

There is a fear of failure.

Note:

- 1) Since X1-X9 are multi-function inputs, it is necessary to set the functions with E01-E09.
- The alarm reset is executed, when RST signal changes from ON to OFF even there are no alarming factors.
- Universal Do is a function utilizing inverter's Do via transmission. (In detail, refer to the detail descriptions E20-E24 in "Function Explanation" in the instruction manual of inverter).
- The data writing exceeding the setting range is possible, but the actual action will be restricted within the inverter.
- When the operation command is instructed through the communication, the relation to the inverter terminal commands becomes as follows.

4. Standard RS485 Interface

Function				Command				
Classification		Symbol	Name	Transmission	Terminal block			
Operation com	mand	FWD/REV	FWD/REV command	Valid	Invalid			
Multi-function	0-3	SS1, 2, 4, 8	Multistep freq. selection					
command	4, 5	RT1, RT2	ACC/DEC time selection					
	6	HLD	3-wire operation stop command	Invalid				
	7	BX	Coast-to-stop command	Valid				
	8	RST	Alarm reset					
	9	THR	Trip command (External fault)	Invalid	Valid			
	10	JOG	Jogging operation	Inv	/alid			
	11	Hz2/Hz1	Freq. set. 2 / Freq. set. 1	Valid	Invalid			
	12	M2/M1	Motor 2 / Motor 1					
	13	DCBRK	DC brake command	DC brake command				
	14	TL2/TL1	Torque limiter 2 / Torque limiter 1					
	15, 16	SW50, SW60	Switching operation between line and inverter (50, 60Hz)					
	17, 18	UP, DOWN	UP, DOWN command	Invalid	Valid			
	19	WE-KP	Write enable for KEYPAD	Valid	Invalid			
	20	Hz/PID	PID control cancel					
	21	IVS	Inverse mode changeover (terminals 12 and C1)					
	22	IL	Interlock signal for 52-2	Invalid	Valid			
	23	Hz/TRQ	TRQ control cancel	Valid	Invalid			
	24	LE	Link enable (Bus, RS485)	Invalid	Valid			
	25	U-DI	Universal DI					
	26	STM	Pick up start mode	V	alid			
	27	PG/Hz	SY-PG enable	Valid	Invalid			
	28	SYC	Synchronization command					
	29	ZERO	Zero speed command					
	30	STOP1	Forced stop command	Invalid	Valid			
	31	STOP2	Forced stop command with Deceleration time 4					
	32	EXITE	Pre-exciting command	Valid				

4.5.3 Function data

Code	Name		Unit	Variable range	Min. unit	Read/write	
S08	Acceleration time	F07	s	0.1-3600.0	0.1	R/W	
S09	Deceleration time	F08	s	0.1-3600.0	0.1	R/W	
S10	Torque limit level 1 (Driving)	F40	%	20.00-200.00(P11S, 20.00-150.00), 999	1.00	R/W	
S11	Torque limit level 2 (Braking)	F41	%	0.00, 20.00-200.00 (P11S, 20.00-150.00), 999	1.00	R/W	

Note:
1) The writing to out of the range is treated as out of range error.
2) The acceleration and deceleration time S08 and S09 are assigned to "F07: Acceleration time 1" and "F08: Deceleration time 1" respectively.
3) The torque limit level 1 and 2 of S10 and S11 are assigned to "F40: Torque limit 1 (Driving)" and "F41: Torque limit 1 (Braking)" respectively.

4.5.4 Monitoring data

Code	Description	Unit	Range	Min. unit	Read/Write
M01	Setting frequency (Final data)	-	-20000 to +20000 (Maximum frequency at ±20000)	1	R
M05	Setting frequency (Final data)	Hz	0-400.00 (P11S: 0.00-120.00)	0.01	R
M06	Output frequency 1	-	-20000 to +20000 (Maximum frequency at ±20000)	1	R
M07	Torque calculation value	%	-200.00 to +200.00	0.01	R
M08	Torque current	%	-200.00 to +200.00	0.01	R
M09	Output frequency 1	Hz	0.00-400.00 (P11S: 0.00-120.00)	0.01	R
M10	Input power	%	0.00-200.00	0.01	R
M11	Output current	%	0.00-200.00 (Inverter rating at 100.00)	0.01	R
M12	Output voltage	V	0.0-600.0	1.0	R
M13	Operation command (Final data)	-	Refer to the data format [14]	-	R
M14	Operating state	-	Refer to the data format [16]	-	R
M15	Y1-Y5 output terminal data	-	Refer to the data format [15]	-	R
M16	Fault memory 0	1-	Refer to the data format [10]	-	R
M17	Fault memory (1st prior)	-	_		
M18	Fault memory (2nd prior)	-			
M19	Fault memory (3rd prior)	-			
M20	Operating time	h	0-65535	1	R
M21	DC link circuit voltage	V	0-1000	1	R
M23	Type code	-	Refer to the data format [17]	-	R
M24	Capacity code	-	Refer to the data format [11]	-	R
M25	ROM version	-	0-64999	1	R
M26	Transmission error code	-	Refer to the data format [10]	-	R
M27	Setting frequency at alarming (Final data)	-	-20000 to +20000 (Maximum frequency at 20000)	1	R
M31	Setting Frequency at alarming (Final data)	Hz	0-400.00 (P11S: 0.00-120.00)	0.01	R
M32	Output frequency at alarming	-	-20000 to +20000 (Maximum frequency at ±20000)	1	R
M33	Torque calculation value at alarming	%	-200.00 to +200.00	0.01	R
M34	Torque current at alarming	%	-200.00 to +200.00	0.01	R
M35	Output frequency 1 at alarming	Hz	-400.00 to +400.00 (P11S: -120.00 to +120.00)	0.01	R
M36	Input power at alarming	%	0.00-200.00	0.01	R
M37	Output current at alarming	%	0.00-200.00 (Inverter rating at 100.00)	0.01	R
M38	Output voltage at alarming	V	0.0-600.0	1.0	R
M39	Operation command at alarming	-	Refer to the data format [14]	-	R
M40	Operating state at alarming	-	Refer to the data format [16]	-	R
M41	Y1-Y5 output terminal data at alarming	-	Refer to the data format [15]	-	R
M42	Operation time at alarming	h	0-65535	1	R
M43	DC link circuit voltage at alarming	V	0-1000	1	R
M44	Inverter internal air temp. at alarming	°C	0-120	1	R
M45	Cooling fin temp. at alarming	°C	0-120	1	R
M46	Life of main circuit capacitor	%	0.0-100.0	0.1	R
M47	Life of printed circuit board capacitor	h	0-65535	1	R
M48	Life of cooling fan	h	0-65535	1	R

Note:
1) The output frequency 1 is before slip compensation.
2) The output frequency 1 with speed regulator (using option OPC-G11S-PG) is treated as the synchronous frequency.

 $^{^{\}star}$ In FVR-E11S series, some data cannot be monitored.

4. Standard RS485 Interface

4.6 Function data format

The data formats for various function data of the inverters are defined here. The data shall be prepared according to the following data format specifications. The instruction manual of inverter shall be referred to for the range and unit of data.

4.6.1 List of function data format

Code	Name	Data format	Code	Name	Data format
F00	Data protection	[1]	E01	X1 terminal function	[1]
F01	Frequency command 1	[1]	E02	X2 terminal function	[1]
F02	Operation method	[1]	E03	X3 terminal function	[1]
F03	Maximum output frequency 1	[1]	E04	X4 terminal function	[1]
F04	Base frequency 1	[1]	E05	X5 terminal function	[1]
F05	Rated voltage 1	[1]	E06	X6 terminal function	[1]
F06	Maximum output voltage 1	[1]	E07	X7 terminal function	[1]
F07	Acceleration time 1	[12]	E08	X8 terminal function	[1]
F08	Deceleration time 1	[12]	E09	X9 terminal function	[1]
F09	Torque boost 1	[3]	E10	Acceleration time 2	[12]
F10	Electronic thermal overload relay 1 (Selection)	[1]	E11	Deceleration time 2	[12]
F11	Electronic thermal overload relay 1 (Level)	[12]	E12	Acceleration time 3	[12]
F12	Electronic thermal overload relay 1	[3]	E13	Deceleration time 3	[12]
	(Thermal time constant)		E14	Acceleration time 4	[12]
F13	Electronic thermal overload relay (Braking resistor)	[1]	E15	Deceleration time 4	[12]
F14	Restart after momentary power failure (Selection)	[1]	E16	Torque limiter 2 (Driving)	[1]
F15	Frequency limiter (High)	[1]	E17	Torque limiter 2 (Braking)	[1]
F16	Frequency limiter (Low)	[1]	E20	Y1 terminal function	[1]
F17	Gain (for frequency setting signal)	[3]	E21	Y2 terminal function	[1]
F18	Bias frequency	[4]	E22	Y3 terminal function	[1]
F20	DC brake (Starting frequency)	[3]	E23	Y4 terminal function	[1]
F21	DC brake (Braking level)	[1]	E24	Y5A, Y5C terminal functions	[1]
F22	DC brake (Braking time)	[3]	E25	Y5 logical reverse functiom	[1]
F23	Starting frequency	[3]	E30	Frequency arrival (FAR) (Detecting width)	[3]
F24	Starting frequency (Holding time)	[3]	E31	Frequency detection 1 (FDT) (level)	[1]
F25	Stop frequency	[3]	E32	Frequency detection (FDT) (Hysteresis width)	[3]
F26	Motor sound (Carrier frequency)	[1] *1	E33	Overload early warning (Mode selection)	[1]
F27	Motor sound (Sound tone)	[1]	E34	Overload early warning 1 (level)	[12]
F30	FMA terminal (Voltage adjust)	[1]	E35	Overload early warning (Timer time)	[3]
F31	FMA terminal (Function selection)	[1]	E36	Frequency detection 2 (FDT) (level)	[1]
F33	FMP terminal (Pulse rate multiplier)	[1]	E37	Overload early warning 2 (level)	[12]
F34	FMP terminal (Voltage adjust)	[1]	E40	Display coefficient A	[12]
F35	FMP terminal (Function selection)	[1]	E41	Display coefficient B	[12]
F36	30Ry operation mode	[1]	E42	Display filter	[3]
F40	Torque limit 1 (Driving)	[1]	E43	LED monitor (Display selection)	[1]
F41	Torque limit 1 (Braking)	[1]	E44	LED monitor (Display at STP mode)	[1]
F42	Torque vector control 1	[1]	E45	LCD monitor (Display selection)	[1]
			E46	LCD monitor (Language)	[1]
			E47	LCD monitor (Contrast adjustment)	[1]

NOTE:

^{*1) 0.75} kHz is treated as 0000H.

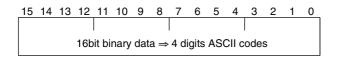
 $^{^{\}star}$ Some of the functions on the list above are not applicable to FVR-E11S series.

Code	Name	Data format	Code	Name	Data format
C01	Jump frequency 1	[1]	H03	Data initializing	[1] *3
C02	Jump frequency 2	[1]	H04	Auto-reset (Times)	[1]
C03	Jump frequency 3	[1]	H05	Auto-reset(Reset interval)	[1]
C04	Jump frequency (Width)	[1]	H06	Fan stop operation	[1]
C05	Multi-step frequency 1	[5]	H07	ACC/DEC pattern (Mode selection)	[1]
C06	Multi-step frequency 2	[5]	H08	Reverse phase sequence lock	[1]
C07	Multi-step frequency 3	[5]	H09	Start mode (Pick-up mode)	[1]
C08	Multi-step frequency 4	[5]	H10	Energy-saving operation	[1]
C09	Multi-step frequency 5	[5]	H11	Deceleration mode	[1]
C10	Multi-step frequency 6	[5]	H12	Instantaneous overcurrent limiting	[1]
C11	Multi-step frequency 7	[5]	H13	Auto-restart (Restart time)	[3]
C12	Multi-step frequency 8	[5]	H14	Auto-restart (Frequency fall rate)	[5]
213	Multi-step frequency 9	[5]	H15	Auto-restart (Holding DC voltage)	[1]
C14	Multi-step frequency 10	[5]	H16	Auto-restart (OPR command selfhold time)	[3] *1
215	Multi-step frequency 11	[5]	H18	Torque control (Mode selection)	[1]
216	Multi-step frequency 12	[5]	H19	Active drive	[1]
217	Multi-step frequency 13	[5]	H20	PID control (Mode selection)	[1]
218	Multi-step frequency 14	[5]	H21	PID control (Feedback signal)	[1]
219	Multi-step frequency 15		H22	` ,	
	' ' '	[5]	-	PID control (P-Gain)	[5]
220	Jogging frequency	[5]	H23	PID control (I-time)	[3]
221	Pattern operation	[1]	H24	PID control (D-time)	[5]
222	Stage 1	[13]	H25	PID control (Feedback filter)	[3]
23	Stage 2	[13]	H26	PTC thermistor (Mode selection)	[1]
24	Stage 3	[13]	H27	PTC thermistor (Level)	[5]
25	Stage 4	[13]	H28	Droop operation	[4]
226	Stage 5	[13]	H30	Serial link (Function selection)	[1]
227	Stage 6	[13]	H31	RS485 (Address)	[1] *2
228	Stage 7	[13]	H32	RS485 (Mode selection on error)	[1] *2
230	Frequency setting	[1]	H33	RS485 (Timer time)	[3] *2
231	Analog input offset (terminal 12) /	[4]	H34	RS485 (Baud rate)	[1] *2
	Analog input bias (terminal 12)		H35	RS485 (Data length)	[1] *2
232	Analog input offset (terminal C1) /	[4]	H36	RS485 (Parity check)	[1] *2
	Analog input gain (terminal 12)		H37	RS485 (Stop bits)	[1] *2
233	Analog filter	[5]	H38	RS485 (No response detection time)	[1] *2
201	Motor 1 (Number of poles)	[9]	H39	RS485 (Response interval)	[5] *2
P02	Motor 1 (Capacity)	[5]	A01	Maximum frequency 2	[1]
203	Motor 1 (Rated current)	[12]	A02	Base frequency 2	[1]
P04	Motor 1 (Auto-tuning)	[1]	A03	Rated voltage 2 (at base speed)	[1]
P05	Motor 1 (On-line tuning)	[1]	A04	Maximum output voltage 2	[1]
P06	Motor 1 (No-load current)	[12]	A05	Torque boost 2	[3]
207	Motor 1 (%R1)	[5]	A06	Electronic thermal 2 (Selection)	[1]
208	Motor 1 (%X)	[5]	A07	Electronic thermal 2 (Level)	[12]
909	Motor 1 (Slip compensation control)	[5]	A08	Electronic thermal 2 (Thermal time constant)	[3]
			A09	Torque vector control 2	[1]
			A10	Motor 2 (Number of motor-2 poles)	[9]
			A11	Motor 2 (Capacity)	[5]
			A12	Motor 2 (Rated current)	[12]
			A13	Motor 2 (Auto-tuning)	[1]
			A14	Motor 2 (On-line tuning)	[1]
			A15	Motor 2 (No-load current	[12]
			A16	Motor 2 (%R1 setting)	[5]
			A17	Motor 2 (%X setting)	[5]
			A18	Motor 2 (Slip compensation control 2)	[5]

NOTE:
*1) 999 is treated as 03E7H (99.9).
*2) Read-only from communication.
*3) The communication might not be able to be continued by writing (data 1).

^{*} Some of the functions on the list above are not applicable to FVR-E11S series.

4. Standard RS485 Interface


Code	Name	Data format	Code	Name	Data format
o01	Speed command system / automatic speed control system	[18]	M01	Setting frequency (Final data)	[2]
002	Time constant of PG vector and speed command filter	[7]	M05	Setting frequency (Final data)	[5]
003	Number of feedback PG pulses	[1]	M06	Output frequency 1	[2]
o04	Constant P of feedback speed controller	[5]	M07	Torque calculation value	[6]
o05	Constant I of feedback speed controller	[7]	M08	Torque current	[6]
006	Time constant of feedback speed detection filter	[7]	M09	Output frequency 1	[19]
o07	Feedback pulse correction coefficient 1	[1]	M10	Input power	[5]
008	Feedback pulse correction coefficient 2	[1]	M11	Output current	[5]
o09	Base side number of encoder pulses	[1]	M12	Output voltage	[3]
o10	Time constant of pulse train input filter	[7]	M13	Operation command (Final data)	[14]
o11	Command pulse compensation coefficient 1	[1]	M14	Operating state	[16]
012	Command pulse compensation coefficient 2	[1]	M15	Y1-Y5 output terminal data	[15]
013	Main speed regulator gain	[3]	M16	Fault memory 0	[10]
o14	APR P gain	[5]	M17	Fault memory (1st prior)	[10]
o15	Z phase matching gain	[3]	M18	Fault memory (2nd prior)	[10]
016	Offset angle	[1]	M19	Fault memory (3rd prior)	[10]
017	Detecting angle width for completion of synchronizing	[1]	M20	Operating time	[1]
018	Too mach deviation	[1]	M21	DC link circuit voltage	[1]
019	Di function selection	[1]	M23	Type code	[17]
o20	Di input mode selection	[1]	M24	Capacity code	[11]
021	Do function selection	[1]	M25	ROM version	[1]
022	Ai function selection	[18]	M26	Transmission error processing code	[10]
o23	Ao function selection	[18]	M27	Setting frequency at alarming (Final data)	[2]
o24	Ao1 voltage adjust	[3]	M31	Setting frequency at alarming (Final data)	[5]
025	Ao2 voltage adjust	[3]	M32	Output frequency at alarming	[2]
o26	Dedicated function for manufacturer	_	M33	Torque calculation value at alarming	[6]
o27	Mode selection on error	[1]	M34	Torque current at alarming	[6]
o28	Timer time setting	[3]	M35	Output frequency 1 at alarming	[19]
o29	Transmission format selection	[1]	M36	Input power at alarming	[5]
			M37	Output current at alarming	[5]
			M38	Output voltage at alarming	[3]
			M39	Operation command at alarming	[14]
S01	Setting frequency (p.u.)	[2]	M40	Operating state at alarming	[16]
S05	Setting frequency	[5]	M41	Y1-Y5 output terminal data at alarming	[15]
S06	Operation command	[14]	M42	Operating time at alarming	[1]
S07	Universal Do	[15]	M43	DC link circuit voltage at alarming	[1]
S08	Acceleration time	[3]	M44	Inverter internal air temp. at alarming	[1]
S09	Deceleration time	[3]	M45	Cooling fin temp. at alarming	[1]
S10	Torque limit level 1	[5] *1	M46	Life of main circuit capacitor	[3]
S11	Torque limit level 1	[5] *1	M47	Life of printed circuit board capacitor	[1]
S12	Universal Ao	[2]	M48	Life of cooling fan	[1]

NOTE: *1) 999 is treated as 03E7H (99.9)

 $^{^{\}star}$ Some of the functions on the list above are not applicable to FVR-E11S series.

4.6.2 Data format specification

All data within the data field of the communication frame except data format [19] shall be represented by ASCII code of 4 digits converted from 16 bits binary data length.

Data format [1] Interger data (Positive): Min. unit 1

Example) If "F15:Frequency limiter (high)" = 60 Hz, Since $60 = 003C_H$

⇒ 0 0 3 C

Data format [2] Integer data (Positive, negative): Min. unit 1

Example) If being -20, Since -20 = FFEC_H

⇒ F F E C

Data format [3] Decimal data (Positive): Min. unit 0.1

Example) If "F17:Gain (for frequency setting signal)" = 100.0%, Since $100.0 \times 10 = 1000 = 03E8H$

⇒ 0 3 E 8

Data format [4] Decimal data (Positive, negative): Min. unit 0.1

Example) If "C31:Analog input offset (terminal 12)" = -5.0%, Since -5.0 x 10 = -50 = FFCE_H

⇒ F F C E

Data format [5] Decimal data (Positive): Min. unit 0.01

Example) If "C05:Multi-step frequency 1" = 50.25 Hz, Since $50.25 \times 100 = 5025 = 13A1_{\text{H}}$

□ 1 3 A 1

Data format [6] Decimal data (Positive, negative): Min. unit 0.01

Example) If "M07:Actual torque value" = -85.38%, Since -85.38 x 100 = -8538 = DEA6_H

□ D E A 6

Data format [7] Decimal data (Positive): Min. unit 0.001

Example) If "o05:Constant I of feedback speed controller" = 0.105 s, Since 0.105 x 1000 = 105 = 0069H

 \Rightarrow 0 0 6 9

Data format [8] Decimal data (Positive, negative): Min. unit 0.001

Example) If being -1.234, Since -1.234 x 1000 = -1234 = FB2E_H

⇒ F B 2 E

Data format [9] Integer data (Positive): Min. unit 2

Example) If "P01:Motor 1 (number of poles)" = 2 poles, Since 2 = 0002H

 \Rightarrow 0 0 0 2

Data format [10] Alarm code

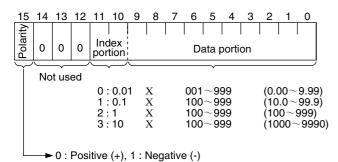
Code	Description	
0	No alarm	——
1	Overcurrent (During acceleration)	OC1
2	Overcurrent (During deceleration)	OC2
3	Overcurrent (While running at constant speed)	OC3
5	Ground fault	EF
6	Overvoltage (During acceleration)	OU1
7	Overvoltage (During deceleration)	OU2
8	Overvoltage (While running at constant speed)	OU3
10	Undervoltage	LU
11	Input phase lose	Lin
14	Fuse blown	FUS
16	Output wiring error	Er7
17	Overheat of heat sink in inverter	OH1
18	External alarm input	OH2
19	Overheat of unit internal temp.	ОНЗ
22	Overheat of DB resistance	dbH
23	Electronic thermal overload relay (Motor 1)	OL1
24	Electronic thermal overload relay (Motor 2)	OL2
25	Electronic thermal overload relay (Inverter)	OLU
27	Overspeed	os
28	PG error	Pg
31	Memory error	Er1
32	KEYPAD panel communication error	Er2
33	CPU error	Er3
34	Option communication error	Er4
35	Option error	Er5
36	Operating proc. error	Er6
37	Output phase loss error	Er7
38	RS485 communication error	Er8
71	Check sum error	
72	Parity error	
73	Other errors	
74	Format error	
75	Command error	
76	Priority of link	
77	No writing right for error	
78	Function code error	
79	Forbidden writing error	
80	Data error	
81	Error during writing	

Example) If overvoltage during acceleration (OU1) Since 6 = 0006_H

 \Rightarrow 0 0 0 6

4. Standard RS485 Interface

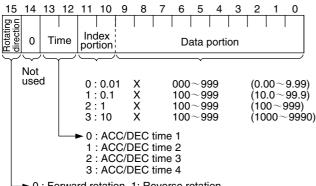
Data format [11] Capacity code


Code	Capacity (kW)	Code	Capacity (kW)
5	0.05	3700	37
10	0.1	4500	45
20	0.2	5500	55
40	0.4	7500	75
75	0.75	9000	90
150	1.5	11000	110
220	2.2	13200	132
370	3.7	16000	160
550	5.5	20000	200
750	7.5	22000	220
1100	11	25000	250
1500	15	28000	280
1850	18.5	31500	315
2200	22	35500	355
3000	30	40000	400

Example) If 30kW

Since $30 \times 100 = 3000 = 0BB8H$

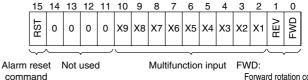
□ B B 8


Data format [12] Exponential data (ACC/DEC time, current value, display coefficient)

Example) If "F07:Acceleration time 1" = 20.0s,

□ 4 C 8

Data format [13] Pattern operation

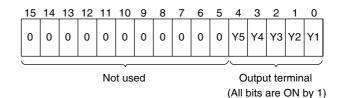

→ 0 : Forward rotation, 1: Reverse rotation

rotation, acceleration time 2/deceleration time 2), $10.0 = 0.1 \times 100 \Rightarrow 9000_{\text{H}} + 0400_{\text{H}} + 0064_{\text{H}} = 9464_{\text{H}}$

Example) If "C22:Stage1" = 10.0s R2 (10s, reverse

□ 9 4 6 4

Data format [14] Operation command


Forward rotation command REV : Reverse rotation command

(All bits are ON by 1)

Example) If "S06:Operation command" = FWD, X1, X5 = ON 0000 0000 0100 0101 $_{\text{b}}$ = 0045 $_{\text{H}}$

 \Rightarrow 0 0 4 5

Data format [15] Y1-Y5 output terminal

Example) If "M15:Y1-Y5 output terminal" = Y1, Y5 = ON 0000 0000 0001 0001_b.= 0011_H

 \Rightarrow 0 0 1 1

Data format [16] Operating status

_						10										
	BUSY	W	/R	R	ALM	DEC	ACC	=	۸۲	TL	NOV	BRK	Ā	EXT	REV	FWD

(All bits are ON or active by 1)

FWD: In forward operation REV: In reverse operation

EXT: In DC braking (or in pre-excitation)

INT: Inverter trip BRK: In braking

NUV: DC link voltage establishment (undervoltage at 0)

TL: In torque limiting
VL: In voltage limiting
IL: In current limiting
ACC: In acceleration
DEC: In deceleration

ALM: Alarm

RL: Transmission valid
WR: Function writing right
0: Keypad panel
1: RS485

2: Link (option)

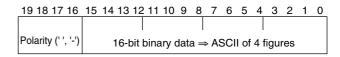
BUSY: In data writing (processing)

Example) Monitoring method is similar as in the formats [14] and [15].

Data format [17] Type code

15 14	1 13	12	11	10	9	8	7	6	5	4	3	2	1	0
Un	it type	Э	G	ene	ratio	n		Se	ries		Vol	tage	se	ries

Code	Туре	Generation	Series	Voltage series
1	VG	11th series	For Japan	100V single phase
2	G	-	For Asia	200V single phase
3	Р	-	For China	200V three phase
4	E	-	For Europe	400V three phase
5	С	-	For USA	575V three phase
6	S	-	-	-


Data format [18] Code setting (1 - 4 figures)

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Dat	ta 4			Dat	a 3			Da	ta 2			Dat	a 1	

Example) If "o22:Ai function selection" = 123, Since 123 = 0123H

 \Rightarrow 0 1 2 3

Data format [19] Polarity + decimal (positive): Min. unit

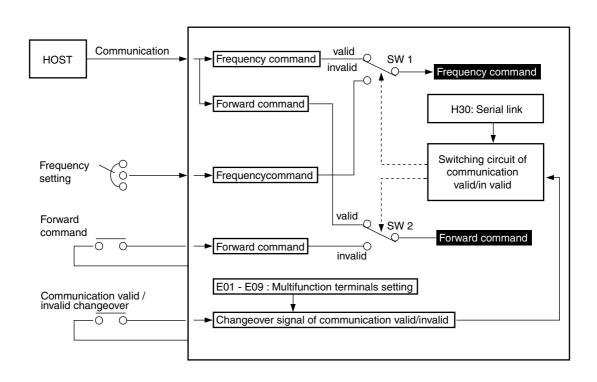
Example)

If "M09:Output frequency" = 60.00 Hz (forward rotation) Since 60.00 x 100 = 6000 = 1770H, (Same as in the data format [5] when being positive data)

 $\Rightarrow 1 \cdot 7 \cdot 7 \cdot 0$

If "M09:Output frequency" = -60.00 Hz (reverse rotation) $60.00 \times 100 = 6000 = 1770H$

Minus is added into special additional data.


□ 1 7 7 0

4.7 Changeover of communications

In order to perform the inverter operation through the communication (by command data and operation data), the communication should be made valid under the condition that 1-3 of "H30: Serial link (Function selection)" has been selected. (The reading and writing of function data and functions are possible in any time regardless the communication valid or invalid).

Be sure to check no run command because of sudden start when valid/invalid communication is changed over, while a run command through RS485 or external signal terminals is remained. **There is a fear of failure.**

4. Standard RS485 Interface

4.7.1 Changeover method for communication valid/ invalid

The changeover of the communication valid/invalid can be performed by the multi-function command terminals (terminals X1-X9) on the inverter. However, it is necessary to set the inverter's multi-function command input terminals (E01 - E09: X1-X9 terminals function) to the link operation selection (Data 24). If the multi-function command terminals have not been set to the link operation selection, the communication becomes valid automatically.

Input terminals	State
OFF	Communication invalid mode
ON	Communication valid mode

Note

- Since all memories are initialized at switching power supply on, the command data and operation data must be write again from the upstream units.
- 2) Even when the communication is invalid, the writing of command data and operation data is valid, but it is not reflected by SW1-SW2. The changeover without shock is possible by the way where the data are set previously during the communication invalid mode at first, then the mode is changed over to the communication valid mode.

4.7.2 Link function (operation selection)

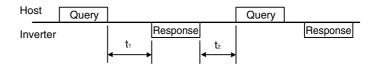
The setting (valid/invalid) for command data and operation data during the communication valid period is possible individually by the setting of " H30: Serial link (Function selection)". (By making the communication always valid without setting at the multi-function terminals, changeover for the H30 data valid/invalid can change over the communication valid/invalid, similar to the changeover with multi-function command terminals.)

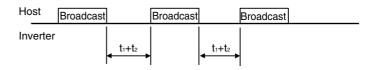
Link function H30	During communic	During communication is invalid	
	SW1 (Command data)	SW2 (Operation data)	SW1, SW2
0	Invalid	Invalid	Invalid
1	Valid	Invalid	
2	Invalid	Valid	
3	Valid	Valid	

4.7.3 Coexistence of link (option) and RS485 communication

When the link options (such as T link, field bus, etc.) are mounted on the inverter, the communication is positioned as described below and the functions are restricted.

Link : The operation through the communication (either one of command data and operation data or both), the operation monitoring, and the reading and changing of functions are possible.


The communication


: The operation monitoring and the reading and changing of functions as loader are possible (Operation through the communication is impossible).

Note:

- The communication valid bit of M14: Operating state becomes the state signal of link option and not of RS485.
- When the command data and operation data are accessed from RS485, NAK is returned.
- If the writing of functions is performed through this communication during the writing of functions by the link, NAK (no writing right error) is returned.

4.8 Response Time

4.8.1 Response interval time

The time till start of response sending after receiving a query from the host such as PLC and PC can be set. By means of the response interval time setting, it is possible to match the sending timing even with the host having slow processing speed.

- Response interval time (t₁)
 - t_1 : Response interval time setting (H39) + t_d
 - t_d: Processing time of inverter

t_d≤10ms

Frame	Processing	Command	
Standard frame	Polling		R, E
	Selecting	s01 - s07	W, A
		s08 - s11	Α
		Function data	Α
Option frame	Polling		g, h, i, j, k
	Selecting		a, e, f, m

t_d≤100ms

Frame	Processing		Command
Standard frame	Selecting	s08 - s11	W
		Function data	W

t_d≤5s

Frame	Processing	Command	
Standard frame	Selecting	H03	W

Note:

- In case of the broadcast, the setting of response interval is invalid (0s) because the inverter does not return the response, but it is necessary to keep t_d even in this case. (The all data received during t_d become neglected.)
- 2) If auto-tuning of P04 and A13 is written by single/continuous functions, no response returns till completion of the tuning or occurring of Er7. If tuning starting is commanded by the terminal blocks or FWD/REV on the keypad panel during the invalid state of communication, take care that the waiting state continues till receiving of the starting command).

4.8.2 Time of receiving preparation completion

This defines the time from returning the response to completing receiving preparation of the input port in the inverter.

 t_2 : Time of receiving preparation completion ≤ 0.1 ms

4.9 Function

■ H30 Serial link (Function select)

H30 LINK FUNC

The link function (communication function) can connect RS485 (provided as standard) to various bus connections (option).

The link function includes:

- Monitoring (various data monitoring and function data check)
- 2) Frequency setting
- Operation commands
 (Commands such as FWD and REV set at the digital inputs)
- 4) Writing function data

Setting link function when communication is valid

Setting value	Frequency setting	Operation command
0	Invalid	Invalid
1	Valid	Invalid
2	Invalid	Valid
3	Valid	Valid

Monitoring function and writing function data function are always valid. If making the communication of digital input invalid, the state becomes similar to 0 of the setting value. When option related to busses is provided, this setting in the function becomes the function selecting of the option, and the function of RS485 is restricted only to monitoring and writing function data. When not providing option, this setting becomes function selecting of RS485.

■ H31 RS485 (Address)

to

■ H39 RS485 (Response interval)

These set various conditions of the communication through RS485. Set these so as to match with upstream devices. For the protocols, refer to the technical manual.

H31 485ADDRESS

Setting the station address of RS485

- Setting range: 1 - 31

H32	MODE ON ER
H33	TIMER

Setting action when occurring error and value of timer for the action

Setting value	Processing at communication error
0	Immediate Er8 alarm (forced stop)
1	Continue operation within timer time, after timer time, Er8 alarm
2	Continue operation within timer time, and retry operation. After timer time, Er8 alarm if communication error, or continue operation if no error.
3	Continue operation

BAUD RATE

Setting transmission speed

Setting value	Transmission speed
0	19200 bits/s
1	9600 bits/s
2	4800 bits/s
3	2400 bits/s
4	1200 bits/s

H35 LENGTH

Setting data length

Setting value	Data length
0	8 bits
1	7 bits

H36 PARITY

Setting parity bits

Setting value	Parity bit
0	None
1	Even number
2	Odd number

H37 STOP BITS

Setting stop bits

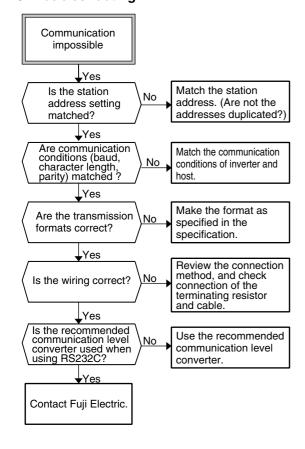
Setting value	Stop bit
0	2 bits
1	1 bit

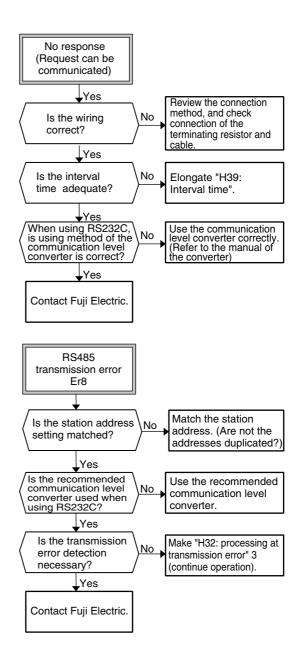
H38 NO RES t

In a system where the local station is always surely accessed within a specific time, this function detects that access was stopped due to an open-circuit or other fault and invoke an Er8 trip.

Setting range: 0: No detection

1 to 60s


4. Standard RS485 Interface


H39 INTERVAL

This function sets the time from being issued a request from the upstream device to a response starting to return.

Setting range: 0.00 to 1.00s

4.10 Troubleshooting

4.11 Appendix

4.11.1 Communication level converter

A communication level converter of product on the market is necessary for connection with a device provided RS232C as a serial interface. To correctly use, be sure to use the converter fulfilling the following specification.

- Specification of the recommended communication level converter
- Changeover method of sending/receiving Automatic changeover by monitoring the sending data on the host (RS232C) side
- Fail safe With fail safe function
- Others Excellent noise- proof characteristics

4.11.2 ASCII code list

	00н	10н	20н	30н	40н	50н	60н	70н
0н	NUL	DLE	SP	0	@	Р	`	р
1н	SOH	DC1	!	1	Α	Q	а	q
2н	STX	DC2	=	2	В	R	b	r
3н	ETX	DC3	#	3	O	S	С	s
4н	EOT	DC4	\$	4	D	Т	d	t
5н	ENQ	NAK	%	5	Е	U	е	u
6н	ACK	SYN	&	6	F	V	f	V
7 н	BEL	ETB	-	7	G	W	g	w
8н	BS	CAN	(8	Η	Х	h	х
9н	HT	EM)	9	I	Υ	i	у
Ан	LF	SUB	*	:	J	Z	j	z
Вн	VT	ESC	+	;	K	[k	{
Сн	FF	FS	,	<	L	/	I	- 1
Dн	CR	GS	•	=	М]	m	}
Ен	so	RS		>	N	٨	n	~
Fн	SI	US	/	?	0	_	0	DEL

Netted codes are used in this communication.

4. Standard RS485 Interface

4.11.3 Example of a control program

Sample program of QBasic (for MS-DOS) for reading/writing "F03: Maximum frequency 1" is shown as follows. [QBasic is in ¥Other¥Oldmsdos¥ in the CD-ROM of Microsoft Windows 95.]

```
100□SAMPLE PROGRAM(MS-DOS QBasic)□
110□OPEN "COM1:9600,N,8,2" FOR RANDOM AS #1□
                                                                        '8BITS,2BITS,NONE□
120□SOH$□=□CHR$(&H1)□
                                                                         'ASCII SET□
130□ETX$□=□CHR$(&H3)□
140\(\text{LENQ$\(\text{LENQ}\) \(\text{LENQ}\) \(\text{LENQ}\)
150□ACK$□±□CHR$(&H6)□
160□NAK$□=□CHR$(&H15)□
170□ESC$□=□CHR$(&H1B)□
180□CLS□
1000□PRINT "SELECT OPERATION 1:READ,2:WRITE"□
1010□KEY$ = INKEY$: IF KEY$ = "" THEN 1010□
1020□F KEY$ = "2" THEN 3000□
1030□□
2000□==== READ(F03) ====□
2010□CMD$ = SOH$□
                                                                        'SOH□
                                                                        'ADDRESS(01 - 31)□
2020\square CMD\$ = CMD\$ + "01"\square
2030\square CMD\$ = CMD\$ + ENQ\$\square
                                                                        'ENO□
2040 CMD$ = CMD$ + "R" C
2050 CMD$ = CMD$ + "F03" C
2060 CMD$ = CMD$ + "0000" C
                                                                        'COMMAND(R,W,A,E)□
                                                                        'CODE(F00...)□
                                                                        'DATA(0000 - FFFF)□
2070\square CMD\$ = CMD\$ + ETX\$\square
                                                                        'ETX□
2080□GOTO 4000□
2090□□
3000□==== WRITE(F03:50Hz) ====□
3010□CMD$ = SOH$□
                                                                        'SOH□
3020□CMD$ = CMD$ + "01"□
                                                                        'ADDRESS(01 - 31)□
3030\square CMD\$ = CMD\$ + ENQ\$\square
                                                                        'ENQ□
3040□CMD$ = CMD$ + "W"□
3050□CMD$ = CMD$ + "F03"□
3060□CMD$ = CMD$ + " 0032"□
                                                                        'COMMAND(R,W,A,E)\square
                                                                        'CODE(F00...)□
                                                                        'DATA(0000 - FFFF)□
3070\square CMD\$ = CMD\$ + ETX\$\square
                                                                        'ETXD
3080□□
4000□==== SEND ====□
4010□BUF$ = CMD$□
4020□GOSUB CALCBCC□
4030□CMD$ = CMD$ + BCC$□
                                                                        'BCC□
4040□□
4050□PRINT #1, CMD$□
                                                                        'SEND□
4060□□
4100□==== RECV ====□
4110\square RECV\$ = INPUT\$(1, #1)\square
                                                                        'RECV□
4120□F RECV$ = SOH$ THEN ANSWER$ = ""□
4130□ANSWER$ = ANSWER$ + RECV$□
4140□F RECV$ <> ETX$ THEN 4110□
4150\square ANSWER\$ = ANSWER\$ + INPUT\$(2, #1)\square
4160□PRINT "RECEIVED DATA:"; ANSWER$□
41701
4180□PRINT "HIT ANY KEY (ESC -> END)"□
4190□KEY$ = INKEY$: IF KEY$ = "" THEN 4190□
4200□F KEY$ \Leftrightarrow ESC$ THEN 1000□
4210□CLOSE #1□
4220□END□
4230□□
5000□CALCBCC:□
5010\square B = 0: C = 2\square
5020\Box CHAR\$ = MID\$(BUF\$, C, 1)\Box
                                                                        'ADD□
5030\square B = B + ASC(CHAR\$)\square
5040□C = C + 1□
5050□F CHAR$ \Leftrightarrow ETX$ THEN 5020□
5060□B = B AND &HFF□
5070□BIN = INT(B / 16): GOSUB BINTOASC: BCC$ = ASCII$□
5080□BIN = B MOD 16: GOSUB BINTOASC: BCC$ = BCC$ + ASCII$ □
5090□RETURN□
5100□□
5110□BINTOASC:□
5120□F BIN < 10 THEN ASCII$ = CHR$(ASC("0") + BIN) ELSE ASCII$ = CHR$(ASC("A") + BIN - 10)□
5130□RETURN
```

5. Using Lifetime Forecast Functions

Following information is for FRENIC5000G11S/P11S series. (For FVR-E11S series, same data can be monitored by selecting Function codes H40 to H46.)

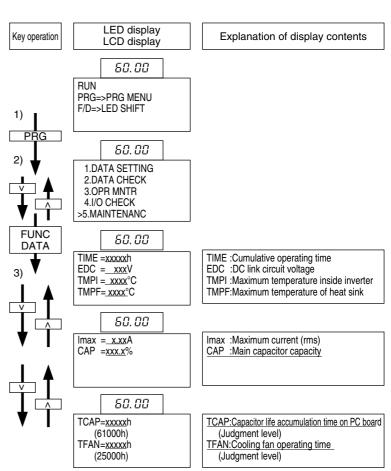
■ Equipping lifetime forecast functions as standard

• The inverter itself manages average lives of the parts having lives, and outputs a lifetime forecast alarm signal. Then, the customer can be presented information on periodical parts exchange without previously arranging a spare inverter.

5.1 Contents of lifetime forecast functions

Lifetime forecast function		Parts having lives in inverter	Life as standard
Monitoring the lifetime information		Main circuit smo	othing capacitor
Regardless of running or stopping of inverter, you can see the information of each part		The capacitance of the capacitor is measured when turning off power supply to the inverter.	The capacitance of the capacitor is 85% or less of the initial value.
having lifetime on the KEYPAD panel.	_/_	Capacitor on the	control PC board
Outputs lifetime forecast	7/	The accumulated energized time under consideration of temperature inside the inverter is measured.	The accumulated energized time is 61,000 hours or more.
A warning signal can be output when the conditions of each part		Coolin	ng fan
having life become under the standard lives.		The accumulated operation time of the cooling fan is measured.	The accumulated operation time of the fan is; 40,000 hours [3.7kW or less] 25,000 hours [5.5 kW or more]

5.2 How to check lifetime forecast information


This information can be checked with maintenance information screen on the KEYPAD panel regardless of running or stopping of the inverter.

• Confirmable items

- Reduction ratio of the capacitance of the main circuit smoothing capacitor
- Life accumulation time of the capacitor on the PC hoard
- Accumulated operation time of the cooling fan

• How to check

- 1) Move from the operation mode screen to the program menu screen.
- 2) On the program menu screen, select "5. Maintenance" with and keys.
- 3) On the maintenance screen, the capacitance of main capacitors, etc. can be checked.

5. Using Lifetime Forecast Functions

5.3 Measuring conditions of lifetime

• Main circuit smoothing capacitor

(Standard life: 85% of the initial value)

Measure the capacitance after setting an initial condition to keep the load of main circuit capacitor of the inverter constant. The initial condition is that the cooling fan is in operation (for the inverters of 1.5kW or more), the inverter is stopped, and the power supply is switched off. Then, the capacitance of the main circuit capacitor is measured.

The correct measurement cannot be performed in the following operation condition:

- When using an option card.
- When supplying the power from the auxiliary control power supply terminal.
- When communicating through RS485.
- When sending or receiving the power through a DC bus with other inverters.
- <To use the lifetime forecast function under these conditions, contact Fuji Electric.>

Capacitor on control PC board

(Standard life: 61,000 hrs)

Instead of measuring the capacitance of the PC board capacitor as in the case of the main circuit capacitor, it is shown as the life accumulation time (*) that the supplied time of the control power supply is multiplied by life coefficient depending on the ambient temperature of the PC board.

Cooling fan

Standard life: 40,000 hours [inverters of 3.7kW or less]

: 25,000 hours [inverters of 5.5kW or more]

The cooling fan is simply shown with the accumulation of its operation time(*).

(*) The accumulated time is counted in one-hour units and does not include time less than one hour.

Output setting of lifetime forecast

When any of the three standard lives described above is reached, a lifetime forecast signal can be output. However, for the cooling fan, the signal is output at 25,000 hours as a standard life, regardless of inverter capacity. Since there is no specific terminal, 4 transistor output terminals (Y1 to Y4) for which many functions are selectable or one relay output terminal (Y5) can be used by setting this function.

[Example of setting]

- When outputting the signal from Y1 terminal (transistor output), a function code "E20" is set at "30:[LIFE]".
- When outputting the signal from Y5A or Y5C terminal (Relay terminal), a function code "E24" is set at "30:[LIFE]".

Peripheral Equipment

Contents

1. Inverter Input Current	3-2
2. Circuit Breakers and Magnetic Contactors	3-3
3. Wire Size	3-4
3.1 FRENIC5000G11S/P11S Series	
3.2 FVR-E11S Series	
3.3 Allowable current of Insulation wire	
4. Braking Unit and Braking Resistor	3-12
4.1 FRENIC5000G11S/P11S Series	
4.2 FVR-E11S Series	3-14
5. Braking Unit and Braking Resistor (10%ED)	3-15
5.1 FRENIC5000G11S/P11S Series	3-15
5.2 FVR-E11S Series	3-17
6. Rated Sensitive Current of ELCB	3-18
7. Input Circuit Noise Filter (EMC Compliance Filter	er)3-19
7.1 FRENIC5000G11S/P11S Series	3-19
7.2 FVR-E11S Series	3-20
8. Output Curcuit Noise Filter (OFL 2/4)	3-21
9. Output Curcuit Noise Filter (OFL-□□-4A)	3-23
10. DC REACTOR (DCR)	3-25
10.1 FRENIC5000G11S/P11S Series	
10.2 FVR-E11S Series	3-26
11. AC REACTOR (ACR)	3-27
12. Ferrite Ring for Reducing Radio Noise (ACL)	3-29
13. Power Regenerative PWM Converter (RHC)	3-29

1. Inverter input current

1. Inverter Input Current

■ This section describes selecting peripheral devices and cables.

Table 3.1 Various current value through inverter

							•				
			50Hz,	200V (400\	/, 100V)		1	60H	lz, 220V (44	10V)	
Power	Nominal	Input effec		DC link	Braking	resistor	Input effect		DC link	Braking	resistor
gunnly	annlied	l ' curre		circuit	curcuit cu		currer		circuit	circuit cu	
voltage	motor [kW]	With DCR	Without	current [A]	G11S, E11S series	P11S series	With DCR	Without reactor	current [A]	G11S, E11S series	P11S series
	0.1	0.59	1.1	0.72	0.82	001100	0.53	1.1	0.65	0.82	001100
	0.2	0.94	1.8	1.1	1.2		0.84	1.7	1.0	1.2	
	0.4	1.6	3.4	2.0	1.2		1.4	3.2	1.7	1.2	
	0.75	3.1	6.4	3.8	1.6	_	2.7	6.2	3.3	1.6	_
	1.5	5.7	11.1	7.0	3.6		5.1	10.6	6.2	3.6	
	2.2	8.3	16.1	10	3.5		7.5	15.5	9.2	3.5	
	3.7	14.0	25.5	17	4.1		12.5	24.2	15	4.1	
	5.5	19.7	40.8	24	6.4	3.5	16.9	36.2	21	6.4	3.5
Three-	7.5	26.9	52.6	33	6.1	5.3	24.0	46.6	29	6.1	5.3
phase	11	39.0	76.9	48	9.1	5.1	34.7	67.7	42	9.1	5.1
200V	15	54	98	66	11	7.2	48	87	59	11	7.2
	18.5	66	117	81	14	9.3	59	104	72	14	9.3
	22	78	136	96	15	11	70	123	86	15	11
	30	109	168	133	19	19	99	149	121	19	19
	37	135	204	165	25	19	122	181	149	25	19
	45	163	243	200	30	25	148	217	181	30	25
	55	199	291	244	37	30	182	262	223	37	30
	75	272		333	48	37	247		303	48	37
	90	327	_	400 490	61 -	48	296	_	363	61	48
	110	400	1.0			61	364	4 7	446	-	61
	0.4	0.82	1.8	1.0	0.8		0.73	1.7	0.9	0.8	
	0.75	1.5	3.5 6.2	1.8	1.1		1.4 2.6	3.4 6.1	1.7 3.2	1.1 1.8	
	1.5	2.9 4.2	9.2	3.6 5.1	1.8 1.8	_	3.8	9.0	4.7	1.8	-
	2.2 3.7	7.1	14.9	8.7	2.1		6.3	14.2	7.7	2.1	
	5.5	10.0	21.5	12	3.2	1.8	8.3	19.0	10	3.2	1.8
	7.5	13.5	27.9	17	3.1	2.7	12.1	24.6	15	3.1	2.7
	11	19.8	39.1	24	4.5	2.5	17.7	34.5	22	4.5	2.5
	15	26.8	50.5	32	5.7	3.6	24	44	29	5.7	3.6
	18.5	33.2	59.9	40	7.2	4.6	29	53	36	7.2	4.6
	22	39.3	69.3	48	7.7	5.7	35	62	43	7.7	5.7
	30	54	86	66	10	10	49	76	60	10	10
	37	67	104	82	12	10	61	92	75	12	10
Three-	45	81	124	99	15	12	74	111	91	15	12
phase	55	100	150	122	19	15	91	134	111	19	15
400V	75	134		164	24	19	122		149	24	19
	90	160		196	31	24	146		179	31	24
	110	196		240	34	31	178		218	34	31
	132	232		284	41	34	211		258	41	34
	160	282		345	50	41	256		314	50	41
	200	352		431	62	50	320		392	62	50
	220 280	385 491	_	472 601	71 100	62 71	350 446	_	429 546	71 100	62 71
					100			-			100
	315 355	552 624		676 764	124	100 100	502 567	-	615 694	100 124	100
	400	704		862	124	124	640	-	784	124	124
	450	792		970	-	124	720		882	-	124
	500	880		1078	_	124	800		980	_	124
	0.1	1.2	2.2	1.2	0.61	1_7	1.0	2.3	1.0	0.61	
Cim! -	0.2	2.0	3.8	2.0	0.66		1.8	3.9	1.8	0.66	
Single- phase	0.4	3.5	6.4	3.5	0.82		3.2	6.4	3.2	0.82	
200V	0.75	6.5	11.4	6.5	1.4	_	5.9	11.4	5.9	1.4	-
	1.5 2.2	11.8	19.8 28.5	11.8 17.7	1.4 1.7		10.6	19.8	10.6	1.4 1.7	

NOTE: • The inverter efficiency is calculated using individual value by capacity. The input effective value current is obtained for following conditions:

3-2

^{[22}kW or smaller]
• Power source capacity : 500kVA Power source impedance: 2.5%

^{[30}kW or larger]
• Power source capacity and impedance are calculated using values corresponding to Fuji's recommended capacity.

[•] For different power voltages such as 230V or 380V, input current is in inverse proportion to the power voltage.

2. Circuit Breakers and Magnetic Contactors

Table 3.2 Circuit breakers and Magnetic contactors

			able 3.2 Circuit i	oreakers ariu wa			Clors			
Power supply	Nominal applied		Inverter type		Rated cu		MC1 (for i		MC2 (for o	
voltage	motor [kW]	G11S series □: JE or EN	P11S series	E11S series ☐: JE or EN	With DCR	Without reactor	With DCR	Without reactor	G11S, E11S series	P11S series
	0.1 0.2 0.4 0.75	- FRN0.2G11S-2JE FRN0.4G11S-2JE FRN0.75G11S-2JE		FVR0.1E11S-2JE FVR0.2E11S-2JE FVR0.4E11S-2JE FVR0.75E11S-2JE	5	5		SC-05	SC-05	
	1.5 2.2	FRN1.5G11S-2JE FRN2.2G11S-2JE	_	FVR1.5E11S-2JE FVR2.2E11S-2JE	10	10 15 20	SC-05	00.5.4	30-05	_
	3.7	FRN3.7G11S-2JE	EDNE ED11C O IE	FVR3.7E11S-2JE	20	30 50		SC-5-1 SC-N1	00.40	00.40
	5.5	FRN5.5G11S-2JE	FRN5.5P11S-2JE	FVR5.5E11S-2JE	30		00 5 4		SC-4-0	SC-4-0
Three-	7.5	FRN7.5G11S-2JE	FRN7.5P11S-2JE	FVR7.5E11S-2JE	40	75	SC-5-1	SC-N2	SC-N1	SC-5-1
phase 200V	11	FRN11G11S-2JE	FRN11P11S-2JE		50	100	SC-N1	SC-N2S	00 No	SC-N1
200 V	15	FRN15G11S-2JE	FRN15P11S-2JE		75	125	SC-N2	SC-N3	SC-N2	SC-N2
	18.5		FRN18.5P11S-2JE		100	150	SC-N2S	SC-N4	SC-N2S	SC-N2S
-	22	FRN22G11S-2JE	FRN22P11S-2JE			175	00 114	SC-N5	SC-N3	00 N/4
	30	FRN30G11S-2JE	FRN30P11S-2JE		150	200	SC-N4	SC-N7	SC-N4	SC-N4
	37	FRN37G11S-2JE	FRN37P11S-2JE	_	175	250	SC-N5	SC-N8	SC-N5	SC-N5
	45	FRN45G11S-2JE	FRN45P11S-2JE		200	300	SC-N7		SC-N7	SC-N7
	55	FRN55G11S-2JE	FRN55P11S-2JE		250	350	SC-N8	SC-N11	SC-N8	SC-N8
	75	FRN75G11S-2JE	FRN75P11S-2JE		350		SC-N11		SC-N10	SC-N10
	90	FRN90G11S-2JE	FRN90P11S-2JE		400	-		_	SC-N11	SC-N11
	110	_	FRN110P11S-2JE		500		SC-N12		_	SC-N12
	0.4	FRN0.4G11S-4 FRN0.75G11S-4		FVR0.4E11S-4 FVR0.75E11S-4	5	5		00.05		
	1.5 2.2	FRN1.5G11S-4□ FRN2.2G11S-4□	_	FVR1.5E11S-4□ FVR2.2E11S-4□		10 15	SC-05	SC-05	SC-05	_
		FRN3.7G11S-4□*1)		FVR3.7E11S-4□ *3)	10	20	30-03			
	5.5	FRN5.5G11S-4□	FRN5.5P11S-4JE	FVR5.5E11S-4□	15	30		SC-4-0		SC-05
	7.5	FRN7.5G11S-4□	FRN7.5P11S-4JE	FVR7.5E11S-4□	20	40		SC-5-1		
	11	FRN11G11S-4□	FRN11P11S-4JE		30	50		SC-N1	SC-4-0	SC-4-0
	15	FRN15G11S-4□	FRN15P11S-4JE		40	60	SC-5-1		SC-5-1	SC-5-1
	18.5	FRN18.5G11S-4□	FRN18.5P11S-4JE		40	75	CC N1	SC-N2	CC N4	CC N11
	22	FRN22G11S-4□	FRN22P11S-4JE		50	100	SC-N1	SC-N2S	SC-N1	SC-N1
Ī	30	FRN30G11S-4□*2)	FRN30P11S-4JE		75	405	SC-N2	SC-N3	SC-N2	SC-N2
İ	37	FRN37G11S-4□	FRN37P11S-4JE			125	SC-N2S	SC-N4	SC-N2S	SC-N2S
İ	45	FRN45G11S-4□	FRN45P11S-4JE		100	150	SC-N3	SC-114	SC-N3	SC-N3
Three-	55	FRN55G11S-4□	FRN55P11S-4JE		125	200	SC-143	SC-N5	SC-N4	SC-N4
phase	75	FRN75G11S-4□	FRN75P11S-4JE		175		SC-N4		SC-N5	SC-N5
400V	90	FRN90G11S-4□	FRN90P11S-4JE		200	1 1	SC-N7		SC-N7	SC-N7
İ	110	FRN110G11S-4□	FRN110P11S-4JE	_	250]	SC-IV/			
İ	132	FRN132G11S-4□	FRN132P11S-4JE		300	1 1	SC-N8		SC-N8	SC-N8
	160	FRN160G11S-4□	FRN160P11S-4JE		350	1 1	SC-N11		SC-N11	SC-N11
	200	FRN200G11S-4□	FRN200P11S-4JE		500	1				
	220	FRN220G11S-4□	FRN220P11S-4JE		500	1	SC-N12		SC-N12	SC-N12
	280	FRN280G11S-4□	FRN280P11S-4JE		600	- 1		_		·
	315	FRN315G11S-4□	FRN315P11S-4JE			1	SC-N14		SC-N14	SC-N14
	355	FRN355G11S-4JE	FRN355P11S-4JE		800					
i	400	FRN400G11S-4	FRN400P11S-4JE			1 1			SC-N16	
	450		FRN450P11S-4JE		1200		SC-N16		30-1410	SC-N16
ł	500	_	FRN500P11S-4JE		00		33 1113		_	30 1110
	0.1			FVR0.1E11S-7□						
ł	0.1			FVR0.2E11S-7	5	5				
Single-	0.2			FVR0.4E11S-7□]	10		SC-05		
phase	0.4	_	_	FVR0.4E11S-7	10	15	SC-05	30-05	SC-05	_
200V				FVR0.75E11S-7	15	20				
-	1.5							CC = 1		
	2.2			FVR2.2E11S-7□	20	30		SC-5-1		

NOTES: For the MCCB and ELCB types, the rated current values recommended for 50°C or lower panel inside temperature are shown. Select an actual type according to the facility short-circuit interrupting capacity.

*1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

*2) JE FRN30G11S-4JE EN FRN30G11S-4EN or FRN30G11S-4EV

*3) JE FVR3.7E11S-4E EN FVR4.0E11S-4EN

3. Wire Size

3. Wire Size

3.1 FRENIC5000G11S/P11S Series

(a) Under the 50°C or lower panel inside temperature

Table 3.3 (a) Wire size (50°C)

				J. J. (C	-,		ZE (30			di.a	ai=a [man	21			
Davis	Manainal	Inverte	er type								size [mr		+ -i	:: + FI I	\/ \\/1
I	Nominal						ircuit [L ⁻					Out			, V, W]
	applied			L		n DCR				ıt reac				serie	
voltage		G11S series	P11S series												Current
	[kW]	☐: JE or EN		60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]
	0.2	FRN0.2G11S-2JE					0.94				1.8				1.5
	0.4	FRN0.4G11S-2JE					1.6	2.0			3.4				3.0
	0.75	FRN0.75G11S-2JE	_	2.0			3.1	_	2.0	2.0	6.4	2.0	2.0		5.0
	1.5	FRN1.5G11S-2JE			2.0	2.0	5.7				11.1			2.0	8.0
	2.2	FRN2.2G11S-2JE					8.3	3.5			16.1				11
	3.7	FRN3.7G11S-2JE					14.0	5.5	3.5		25.5	3.5			17
	5.5	FRN5.5G11S-2JE	FRN5.5P11S-2JE	3.5	0.5		19.7	14	5.5	3.5	40.8	5.5	3.5	0.5	25
	7.5	FRN7.5G11S-2JE	FRN7.5P11S-2JE	5.5	3.5		26.9		8.0	5.5	52.6	8.0	3.5	3.5	33
Three-	11	FRN11G11S-2JE	FRN11P11S-2JE	14	5.5	3.5	39.0	_	14	14	76.9	14	8.0	5.5	46
phase	15	FRN15G11S-2JE	FRN15P11S-2JE	22	8.0	5.5	54.0	_	22	14	98.5	22	8.0	8.0	59
200V	18.5	FRN18.5G11S-2JE	FRN18.5P11S-2JE		14	8.0	66.2	-	38	22	117	_	14	14	74
	22	FRN22G11S-2JE	FRN22P11S-2JE	-	14	14	78.8	-	38	38	136	-	14	14	87
	30	FRN30G11S-2JE	FRN30P11S-2JE	60	38	22	109	<u> </u>	60	38	168	60	38	22	115
	37	- 	FRN37P11S-2JE	-	38	38	135	_	60	60	204	100	38	38	145
	45	FRN37G11S-2JE	- -	100					100						
	45	FRN45G11S-2JE	FRN45P11S-2JE		60	38	163	 -	100	60	243	_	60	38	180
	55	FRN55G11S-2JE	FRN55P11S-2JE		100	60	199	-	100	100	291	_	100	60	215
	75	- 	FRN75P11S-2JE	_	100 150	100	272					_	150	100	283
	90	FRN75G11S-2JE	FRN90P11S-2JE	 	150	100	327	-		-			150	150	346
ŀ		FRN90G11S-2JE		 -	200	150	400	-				_	150	-	340
	110 0.4	 FRN0.4G11S-4□	FRN110P11S-2JE	 -	200	150	0.82				1.8	_	_	_	1.5
ł	0.75	FRN0.75G11S-4					1.5	-			3.5	-			2.5
}	1.5	FRN1.5G11S-4	_				2.9	2.0			6.2	2.0			3.7
ł	2.2	FRN2.2G11S-4□		2.0			4.2	2.0	2.0	2.0	9.2	2.0	2.0		5.5
ŀ	3.7, 4.0	FRN3.7G11S-4□*2)		0	2.0	2.0	7.1	1		2.0	14.9	1	2.0	2.0	9.0
ł	5.5	FRN5.5G11S-4□	FRN5.5P11S-4JE				10.0	5.5			21.5				13
İ	7.5	FRN7.5G11S-4	FRN7.5P11S-4JE				13.5	5.5	3.5		27.9	3.5			18
	11	FRN11G11S-4□	FRN11P11S-4JE	3.5			19.8	14	5.5	3.5	39.1	5.5			24
	15	FRN15G11S-4□	FRN15P11S-4JE	5.5	3.5		26.8	14	8.0	5.5	50.3	8.0	3.5		30
İ	18.5	FRN18.5G11S-4□	FRN18.5P11S-4JE		5.5	3.5	33.2	22	14	8.0	59.9	14	5.5	3.5	39
İ	22	FRN22G11S-4□	FRN22P11S-4JE	14	5.5	3.5	39.3	_	14	8.0	69.3	14	8.0	5.5	45
Three-	30	FRN30G11S-4□*3)	FRN30P11S-4JE	22	8.0	5.5	54	_	22	14	86	22	14	8.0	60
phase	37	FRN37G11S-4□	FRN37P11S-4JE	38	14	8.0	67	60	22	22	104	38	14	14	75
400V	45	FRN45G11S-4□	FRN45P11S-4JE	38	22	14	81	60	38	22	124	38	22	14	91
	55	FRN55G11S-4□	FRN55P11S-4JE	60	22	14	100	_	60	38	150	60	38	22	112
	75	_	FRN75P11S-4JE	_	00	00	101					100	-00		150
	75	FRN75G11S-4□	_	100	38	38	134					100	60	38	150
	90	FRN90G11S-4□	FRN90P11S-4JE	100	60	38	160					_	60	38	176
	110	FRN110G11S-4□	FRN110P11S-4JE	_	60	60	196					_	100	60	210
	132	FRN132G11S-4□	FRN132P11S-4JE	_	100	60	232]				_	100	100	253
	160	FRN160G11S-4□	FRN160P11S-4JE		150	100	282					_	150	100	304
	200	FRN200G11S-4□	FRN200P11S-4JE		150	150	352	_		_		_	200	150	377
	220	FRN220G11S-4□	FRN220P11S-4JE		200	150	385	_		_		_	200	150	415
	280	FRN280G11S-4□	FRN280P11S-4JE		250	200	491						2×150		520
	315	FRN315G11S-4□	FRN315P11S-4JE		2×150		552	_					2×150		585
	355	FRN355G11S-4JE	FRN355P11S-4JE		2×200		624						2×200		650
	400	FRN400G11S-4□	FRN400P11S-4JE		2×200		704	_				_	2×250	325	740
	450	_	FRN450P11S-4JE		2×250		792	_					-	_	
	500	_	FRN500P11S-4JE	l –	2×325	2×200	880								

^{*} Select an appropriate wire size referring to Table 3.1 and Table 3.2 if conditions such as ambient temperature or power voltage are different. NOTES: *1) Allowable temperature 60°C means using "IV wire"; 75°C means "600V HIV insulation wire"; and 90°C means "600V cross-linking"

polyethylene insulation wire".

*2) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

*3) JE FRN30G11S-4JE EN FRN30G11S-4EV

Table 3.3 (a) Wire size (50°C) (cont'd)

	Table 3.3 (a) Wire size (50°C) (cont'd) Recommended wire size [mm²] utput circuit [U, V, W] DC link circuit Braking circuit [P(+), DB, N(-)] Control circuit Auxiliary control Grounding																							
]									
							uit									Con	trol c	ircuit	1	•		l		ng
1	P11S					P(+)]		1		series		1		series						supply [⊕ G]	
			Current																					
60°C	75°C	90°C	[A]	60°C	75°C	90°C		60°C	75°C	90°C		60°C	75°C	90°C	[A]	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C
-	_	_	_	2.0	2.0	2.0	1.1 2.0 3.8 7.0 10				1.2 1.6 3.6 3.5 4.1	_	_	_	_							2.0	2.0	2.0
5.5	2.0	2.0	22	5.5			24	2.0	2.0		6.4				3.5							3.5		
8.0	3.5	2.0	29	8.0	3.5	3.5	33			2.0	6.1				5.3							5.5	3.5	
14	5.5	3.5	42	14	8.0	5.5	48			2.0	9.1	2.0			5.1							14	5.5	3.5
22	8.0	5.5	55	22	14	8.0	66				11	2.0			7.2							22	8.0	5.5
	14	8.0	67	_	22	14	81				14		2.0		9.3	1.25	1.25	1.25	2.0	2.0	2.0	_	14	8.0
	14	14	78	_	22	14	96	0.5			15			2.0	11	-						_	14	14
_	38	38	115 145	_	38 60	38	133 165	3.5 5.5			19 25	3.5			19 19	-						_	38	38
-	60	38	180	_	60	60	200	8.0	3.5		30	5.5			25	-						_	60	38
_	100	60	215	_	100	60	244	14	5.5	3.5	37	8.0	3.5		30							_	100	60
_	100	100	283	_	150	100	333	14	8.0	5.5	45	14	5.5	3.5	37							_	100 150	100
_	150	150	346	_	200	150	400	22	14	8.0	61	14	8.0	5.5	48							_	150	100
_	200	150	415	_	250	200	490	_	_	_	_	22	14	8.0	61							_	200	
							1.0				0.8													
_	_	_	_	2.0	2.0	2.0	1.8 3.6 5.1 8.7				1.1 1.8 1.8 2.1	_	-	_	_							2.0	2.0	2.0
2.0			12.5				12				3.2				1.8									
3.5	2.0	2.0	16.5				17	2.0			3.1				2.7									
5.5			23	5.5			24	0			4.5				2.5							3.5		
8.0	3.5		30	8.0	5.5	3.5	32		2.0	2.0	5.7				3.6	-						5.5	3.5	
14	5.5	3.5	37	14	5.5	3.5	40				7.2	2.0			4.6	-						8.0	5.5	3.5
14 22	5.5 14	5.5 8.0	44 60	14 22	8.0 14	5.5 8.0	48 66				7.7		2.0		5.7 10	-						14 22	5.5 8.0	3.5 5.5
38	14	14	75	38	22	14	82				12		2.0	2.0	10	_						38	14	8.0
38	22	14	91	60	22	14	99	†			15	1			12	1						38	22	14
60	38	22	112	60	38	22	122	3.5			19	1				1.25	1.25	1.25	2.0	2.0	2.0		22	14
100	60	38	150	100	60	38	164	5.5			24	3.5			19	0		0				- 100	38	38
	60	38	176	_	60	60	196	8.0	3.5		31	5.5			24	1						100	60	38
	100	60	210	_	100	60	240	8.0	5.5	3.5	34	8.0	3.5	1	31	1						-	60	60
_	100	100	253	_	150	100	284	14	5.5	3.5	41	8.0	5.5	3.5	34	1						_	100	60
_	150	100	304	_	150	150	345	14	8.0	5.5	50	14	5.5	3.5	41	1						_	150	100
_			377	_	250	150	431	22	14	8.0	62	14	8.0	5.5	50							_	150	
_	200	150	415	_	250	200	472	38	14	14	71	22	14	8.0	62							_	200	
	2×150		520		2×200		601	60	22	14	100	38	14	14	71							_	250	
	2×150		585		2×200			60	22	14	100	60	22	14	100							_	325	
	2×200	2×150	650		2×250			60	38	22	124	60	22	14	100	_						_	400	
	2×250		740		2×325			60	38	22	124	60	38	22	124	-							500	
	2×250		840		2×325		970 1078	-	-	-		60	38	22	124	-						_	_	<u>400</u> 500
	2×325	Z×20U	960	_	ZX 3Z3	ZX 3Z5	ุ เบ/ช					60	38		124							_	_	500

3. Wire Size

(b) Under the 40°C or lower panel inside temperature

Table 3.3 (b) Wire size (40°C)

		Inverte	ar type								size [mr				
Power	Nominal	iliverte	я туре				ircuit [L1					Out			, V, W]
supply	applied				With	n DCR		\	Withou	ıt reac	tor		G115	serie	s
voltage	motor	G11S series	P11S series	Allowa	able ter	mp.*1)	Current	Allowa	able ter	np.*1)	Current	Allowa	able ter	np.*1)	Current
_	[kW]	□: JE or EN		60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]
	0.2	FRN0.2G11S-2JE					0.9				1.8				1.5
1	0.4	FRN0.4G11S-2JE					1.6	2.0			3.4	1			3.0
	0.75	FRN0.75G11S-2JE		2.0			3.1		2.0		6.4	2.0			5.0
	1.5	FRN1.5G11S-2JE	_		2.0		5.7			2.0	11.1		2.0	2.0	8.0
1	2.2	FRN2.2G11S-2JE				2.0	8.3				16.1	1			11
l	3.7	FRN3.7G11S-2JE					14.0	3.5			25.5	1			17
l	5.5	FRN5.5G11S-2JE	FRN5.5P11S-2JE				19.7	8.0	5.5	3.5	40.8	3.5			25
l	7.5	FRN7.5G11S-2JE	FRN7.5P11S-2JE	3.5	1		26.9	14	8.0	5.5	52.6	5.5	3.5		33
Three-	11	FRN11G11S-2JE	FRN11P11S-2JE	5.5	5.5	3.5	39.0	22	14	8.0	76.9	8.0	5.5	3.5	46
phase	15	FRN15G11S-2JE	FRN15P11S-2JE	14	8.0	5.5	54.0	_	22	14	98.5	14	8.0	5.5	59
200V	18.5	FRN18.5G11S-2JE	FRN18.5P11S-2JE	14	14	8.0	66.2	_	22	22	117	22	14	8.0	74
l	22	FRN22G11S-2JE	FRN22P11S-2JE	22	14	14	78.8	_	38	22	136	22	14	14	87
l	30	FRN30G11S-2JE	FRN30P11S-2JE	38	22	14	109	60	38	38	168	_	22	22	115
l	37	_	FRN37P11S-2JE	60	38	22	135	_	60	38	204	60	38	22	145
	31	FRN37G11S-2JE	_	00	36	22	133	100	00	30	204	00	30		145
	45	FRN45G11S-2JE	FRN45P11S-2JE	60	38	38	163	100	100	60	243	100	60	38	180
	55	FRN55G11S-2JE	FRN55P11S-2JE	100	60	38	199	_	100	100	291	100	60	60	215
	75	FRN75G11S-2JE	FRN75P11S-2JE		100	60	272					150	100	100	283
		FRN75G11S-2JE	-	150						-					
	90	FRN90G11S-2JE	FRN90P11S-2JE	200	150	100	327					200	150	100	346
	110	-	FRN110P11S-2JE	250	150	150	400					_	_	_	
	0.4	FRN0.4G11S-4					0.82				1.8				1.5
	0.75	FRN0.75G11S-4					1.5				3.5				2.5
	1.5	FRN1.5G11S-4	_				2.9	2.0	2.0		6.2	2.0			3.7
	2.2	FRN2.2G11S-4		2.0	2.0		4.2			2.0	9.2	-	2.0		5.5
	3.7, 4.0	FRN3.7G11S-4[*2]	EDNE 50440 445			2.0	7.1				14.9	-		2.0	9.0
	5.5	FRN5.5G11S-4	FRN5.5P11S-4JE				10.0	0.5			21.5	-			13
	7.5	FRN7.5G11S-4	FRN7.5P11S-4JE				13.5	3.5		0.5	27.9	0.5			18
	11	FRN11G11S-4	FRN11P11S-4JE	2.5			19.8	5.5	5.5	3.5	39.1	3.5	0.5		24
ļ	15	FRN15G11S-4	FRN15P11S-4JE	3.5 5.5	3.5		26.8 33.2	14	5.5 8.0	5.5 5.5	50.3 59.9	3.5 5.5	3.5	3.5	30 39
	18.5 22	FRN18.5G11S-4□ FRN22G11S-4□	FRN18.5P11S-4JE FRN22P11S-4JE	5.5	5.5	3.5	39.3	14	14	8.0	69.3	8.0	5.5	3.5	<u> </u>
Three-	30	FRN22G11S-4□*3)	FRN30P11S-4JE	14	8.0	5.5	59.3 54	22	14	14	86	14	8.0	5.5	<u>45</u> 60
phase	37	FRN37G11S-4□ 3)	FRN37P11S-4JE	14	14	8.0	67	38	22	14	104	22	14	8.0	75
400V	45	FRN45G11S-4□	FRN45P11S-4JE	22	14	14	81	38	22	22	124	22	14	14	91
4000	55	FRN55G11S-4□	FRN55P11S-4JE	38	22	14	100	60	38	38	150	38	22	14	112
1	- 55	-	FRN75P11S-2JE			17	100	- 00	_ 00	- 00	100			17	
	75	FRN75G11S-2□	-	60	38	22	134					60	38	38	150
	90	FRN90G11S-4□	FRN90P11S-4JE	60	38	38	160					60	60	38	176
	110	FRN110G11S-4	FRN110P11S-4JE		60	38	196					100	60	60	210
l	132	FRN132G11S-4□	FRN132P11S-4JE		60	60	232					150	100	60	253
ŀ	160	FRN160G11S-4□	FRN160P11S-4JE		100	100	282	1				150	100	100	304
١	200	FRN200G11S-4	FRN200P11S-4JE		150	100	352]				200	150	100	377
l	220	FRN220G11S-4□	FRN220P11S-4JE		150	150	385	1		_		250	150	150	415
ı	280	FRN280G11S-4□	FRN280P11S-4JE	_	200	150	491					_	250	200	520
١	315	FRN315G11S-4□	FRN315P11S-4JE	_	250		552					_	250	200	585
١	355	FRN355G11S-4JE	FRN355P11S-4JE		2×150	1	624					_	325	250	650
İ	400	FRN400G11S-4□	FRN400P11S-4JE		2×150	250	704					_	2×200	325	740
ı			FRN450P11S-4JE	_		2×150	792								
	500	_	FRN500P11S-4JE			2×200	880							_	

^{*} Select an appropriate wire size referring to Table 3.1 and Table 3.2 if conditions such as ambient temperature or power voltage are different. NOTES: *1) Allowable temperature 60°C means using "IV wire"; 75°C means "600V HIV insulation wire"; and 90°C means "600V cross-linking".

polyethylene insulation wire".

*2) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

*3) JE FRN30G11S-4JE EN FRN30G11S-4EV

Table 3.3 (b) Wire size (40°C) (cont'd)

	Table 3.3 (b) Wire size (40°C) (cont'd) Recommended wire size [mm²] Output circuit [U, V, W] DC link circuit Braking circuit [P(+), DB, N(-)] Control circuit Auxiliary control Grounding																							
									Re	comn	nende	d wire	e size	[mm²]									
					C linl	circu	ıit					[P(+),	DB, I	N(-)]		Con	trol c	ircuit	Auxi	liary c	ontrol	Gro	oundi	ng
F	P11S	series	3		[P1,	P(+)]		(311S	series	S	F	P11S	series	3				power	supply [R0, T0]	[⊕ G]	
Allowa	able ter	mp.*1)	Current					Allow	able te	mp.*1)														
60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]	60°C	75°C	90°C	60°C	75°C	90°C	60°C	75°C	90°C
_	_	-	-	2.0	2.0	2.0	1.1 2.0 3.8 7.0 10				1.2 1.6 3.6 3.5 4.1	_	_	_	_							2.0	2.0	2.0
2.0 3.5 8.0 14	2.0 5.5 8.0 14	2.0 3.5 5.5 8.0	22 29 42 55 67	3.5 5.5 8.0 14 22	3.5 5.5 14 14	5.5 8.0 14	24 33 48 66 81	2.0	2.0	2.0	6.4 6.1 9.1 11	2.0			3.5 5.3 5.1 7.2 9.3	1.25	1.25	1.25	2.0	2.0	2.0	3.5 5.5 14 14	5.5 8.0 14	3.5 5.5 8.0
22 38	14 22	8.0 22	78 115	- 60	22 38	14 22	96 133				15 19		2.0	2.0	11 19							22 38	14 22	14 14
60	38	22	145	60	38	38	165	3.5			25				19							60	38	22
100	60	38	180	100	60	38	200	3.5	3.5		30	3.5			25							60	38	38
100	60	60	215	100	100	60	244	5.5	3.5	3.5	37	3.5	3.5		30							100	60	38
_	100	100	283	-	150	100	333	8.0	5.5	5.5	48	5.5	3.5	3.5	37							_ 150	100	60
_	150	100	346	-	150	150	400	14	8.0	5.5	61	8.0	5.5	5.5	48								150	
_	150	150	415	_	200	150	490	-	_	_	_	14	8.0	5.5	61							250	150	150
_	_	-	ı	2.0	2.0	2.0	1.0 1.8 3.6 5.1 8.7				0.8 1.1 1.8 1.8 2.1	_	_	_	_							2.0	2.0	2.0
2.0 3.5 3.5	2.0	2.0	12.5 16.5 23 30	3.5 5.5	3.5		12 17 24 32	2.0	2.0		3.2 3.1 4.5 5.7				1.8 2.7 2.5 3.6							3.5	-	
5.5	3.5	3.5	37	5.5	5.5	3.5	40			2.0	7.2				4.6							5.5	3.5	
8.0	5.5	3.5	44	8.0	5.5	5.5	48				7.7	2.0			5.7							5.5	5.5	3.5
14	8.0	5.5	60	14	14	8.0	66				10	2.0	2.0		10							14	8.0	5.5
22	14	8.0	75	22	14	14	82				12			2.0	10	1						14	14	8.0
22	14	14	91	38	22	14	99				15				12	4 05	4 05	4 05				22	14	14
38 60	38	14 38	112 150	38 60	38	38	122 164	3.5			19 24				15	1.25	1.25	1.25	2.0	2.0	2.0	38 60	38	22
									2.5			2.5				-								
60	60	38	176	100	60	38	196	5.5	3.5		31	3.5	2.5		24	-						60	38	38
100 150	60 100	60 60	210 253	100 150		60 100	240 284	5.5 8.0	3.5 5.5	2 5	34 41	5.5 5.5	3.5		31 34	-						100	60 60	38 60
150	100	100	304	200		100	345	8.0	5.5	3.5 5.5	50	8.0	5.5	3.5	41	1						150		
200	150	100	377		200	150	431	14	8.0	5.5	62	8.0	5.5	5.5	50	1							150	
250	150	150	415			150	472	14	14	8.0	71	14	8.0	5.5	62	1							150	
325	250	200	520		2×150		601	38	22	14	100	14	14	8.0	71	1						_	200	
_	t	200	585			250	676	38	22	14	100	38	22	14	100	1						_	250	
	2×150	250	650	-	2×200	2×150	764	38	22	22	124	38	22	14	100								2×150	250
	2×200		740		-	2×200		38	22	22	124	38	22	22	124	_							2×150	
		2×150				2×200				_		38	22	22	124								2×200	
_	2×250	2×200	960	_	2×325	2×250	1078					38	22	22	124							-	2×250	2×200

3. Wire Size

3.2 FVR-E11S Series

(a) Under the 50°C or lower panel inside temperature

Table 3.4 (a) Wire size (50°C)

		Invertor type					Recor	nmende	ed wire	size [mm	2]			
Power	Nominal	Inverter type			Input	circuit [L1	/R, L2/9	S, L3/T]				Outpo	ut circui	t
supply	applied			Wit	h DCR			Withou	ıt reacto	r		[U,	V, W]	
voltage	motor	☐: JE or EN	Allow	able ten	np.*1)	Current	Allow	able tem	np.*1)	Current	Allow	able ten	np.*1)	Current
	[kW]		60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]
	0.1	FVR0.1E11S-2JE				0.59				1.1				0.8
	0.2	FVR0.2E11S-2JE				0.94				1.8				1.5
	0.4	FVR0.4E11S-2JE				1.6	2.0	2.0		3.4	2.0			3.0
Three-	0.75	FVR0.75E11S-2JE	2.0	2.0		3.1		2.0	2.0	6.4	2.0	2.0	2.0	5.0
phase	1.5	FVR1.5E11S-2JE		2.0	2.0	5.7				11.1			2.0	8.0
200V	2.2	FVR2.2E11S-2JE				8.3	3.5			16.1				11
	3.7	FVR3.7E11S-2JE				14.0	5.5	3.5		25.5	3.5			17
	5.5	FVR5.5E11S-2JE	3.5			19.7	14	5.5	3.5	40.8	5.5	3.5		25
	7.5	FVR7.5E11S-2JE	5.5	3.5		26.9	22	8.0	5.5	52.6	8.0	0.5	3.5	33
	0.4	FVR0.4E11S-4□				0.82				1.8				1.5
	0.75	FVR0.75E11S-4□				1.5				3.5]			2.5
Three-	1.5	FVR1.5E11S-4□				2.9	2.0	2.0		6.2	2.0			3.7
phase	2.2	FVR2.2E11S-4□	2.0	2.0	2.0	4.2		2.0	2.0	9.2	2.0	2.0	2.0	5.5
400V	3.7, 4.0	FVR3.7E11S-4□ *1)				7.1				14.9				9
	5.5	FVR5.5E11S-4□				10.0	5.5			21.5]		13
	7.5	FVR7.5E11S-4□				13.5	5.5	3.5		27.9	3.5			18
	0.1	FVR0.1E11S-7□				1.2				2.2				0.8
Single-	0.2	FVR0.2E11S-7□				2.0	2.0			3.8				1.5
	0.4	FVR0.4E11S-7□	2.0	2.0	2.0	3.5		2.0	2.0	6.4	2.0	2.0	2.0	3.0
phase -	0.75	FVR0.75E11S-7□	0	2.0	2.0	6.5			2.0	11.4				5.0
_50 V	1.5	FVR1.5E11S-7□				11.8	3.5			19.8				8.0
	2.2	FVR2.2E11S-7□	3.5			17.7	8.0	3.5		28.5				11

(b) Under the 40°C or lower panel inside temperature

Table 3.4 (b) Wire size (40°C)

		Inverter type							ed wire	size [mm	²]			
Power	Nominal	inverter type			Input	circuit [L1	/R, L2/5	S, L3/T]				Outpu	ut circui	t
supply	applied			Wit	h DCR			Withou	ıt reacto	or		[U,	V, W]	
voltage	motor	☐: JE or EN	Allow	able ten	np.*1)	Current	Allow	able tem	np.*1)	Current	Allow	able ten	np.*1)	Current
	[kW]		60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]	60°C	75°C	90°C	[A]
	0.1	FVR0.1E11S-2JE				0.59				1.1				0.8
	0.2	FVR0.2E11S-2JE	1			0.94				1.8				1.5
	0.4	FVR0.4E11S-2JE	1			1.6	2.0			3.4				3.0
Three-	0.75	FVR0.75E11S-2JE	2.0			3.1	2.0	2.0	2.0	6.4	2.0	2.0		5.0
phase	1.5	FVR1.5E11S-2JE	2.0	2.0	2.0	5.7				11.1		2.0	2.0	8.0
200V	2.2	FVR2.2E11S-2JE				8.3				16.1				11
	3.7	FVR3.7E11S-2JE *1)]			14.0	3.5			25.5				17
	5.5	FVR5.5E11S-2JE				19.7	8.0	5.5	3.5	40.8	3.5			25
	7.5	FVR7.5E11S-2JE	3.5			26.9	14.0	8.0	5.5	52.6	5.5	3.5		33
	0.4	FVR0.4E11S-4□				0.82				1.8				1.5
	0.75	FVR0.75E11S-4□				1.5				3.5				2.5
Three-	1.5	FVR1.5E11S-4□				2.9	2.0			6.2				3.7
phase	2.2	FVR2.2E11S-4□	2.0	2.0	2.0	4.2	2.0	2.0	2.0	9.2	2.0	2.0	2.0	5.5
400V	3.7	FVR3.7E11S-4□				7.1				14.9				9
	5.5	FVR5.5E11S-4□				10.0				21.5				13
	7.5	FVR7.5E11S-4□				13.5	3.5			27.9				18
	0.1	FVR0.1E11S-7□				1.2				2.2				0.8
Single-	0.2	FVR0.2E11S-7□				2.0				3.8				1.5
phase	0.4	FVR0.4E11S-7□	2.0	2.0	2.0	3.5	2.0	2.0	2.0	6.4	2.0	2.0	2.0	3.0
200V	0.75	FVR0.75E11S-7□	2.0	2.0	2.0	6.5		2.0	2.0	11.4	2.0	2.0	2.0	5.0
2000	1.5	FVR1.5E11S-7□				11.8				19.8				8.0
	2.2	FVR2.2E11S-7□				17.7	3.5			28.5				11

NOTES: *1) JE...FVR3.7E11S-4JE EN...FVR4.0E11S-4EN

Table 3.4 (a) Wire size (50°C) (cont'd)

						iabie	3.4 (a) v	vire size (ou C) (coi	nta)			
							Reco	ommended w	/ire size [mm	1 ²]			
	DC li	nk circ	uit		Braki	ng circu	uit	C	control circuit	i	(Grounding	
	[P1	I, P(+)]			[P(+),	DB, N([-)]					[⊜ G]	
Allow	able ten		Current	Allowa	able te	mp.*1)	Current	Allo	wable temp.	.*1)	Allo	wable temp.	·1)
60°C	75°C	90°C	[A]	60°C	75°C	90°C	60°C	[A]	75°C	90°C	60°C	75°C	90°C
			0.72				0.82						
			1.1				1.2						
2.0			2.0				1.2						
2.0	2.0	2.0	3.8				1.6				2.0	2.0	
	2.0	2.0	7.0	2.0	2.0	2.0	3.6	0.5	0.5	0.5		2.0	2.0
]		10				3.5						
3.5			17				4.1						
5.5			24				6.4				3.5		
8.0	3.5	3.5	33				6.1				5.5	3.5	
			1.0	1			0.8						
			1.8	1			1.1						
2.0			3.6	ļ <u>.</u> .			1.8						
	2.0	2.0	5.1	2.0	2.0	2.0	1.8	0.5	0.5	0.5	2.0	2.0	2.0
			8.7	-			2.1						
	_		12	-			3.2						
3.5			17				3.1						
			1.2 2.0	-			0.61 0.66						
2.0			3.5	-			0.82				2.0		
2.0	2.0	2.0	6.5	2.0	2.0	2.0	1.4	0.5	0.5	0.5	2.0	2.0	2.0
			11.8	1			1.4						
3.5	1		17.7	1			1.7				3.5		

Table 3.4 (b) Wire size (40°C) (cont'd)

							Reco	ommended w	rire size [mm	n²]			
	DC li	nk circ	uit		Braki	ng circu	uit	С	ontrol circuit	İ		Grounding	
	[P1	I, P(+)]			[P(+),	DB, N(-)]					[⊕ G]	
Allow	able ten	np.*1)	Current	Allowa	able ter	np.*1)	Current	Allo	wable temp.	*1)	Allo	wable temp.	*1)
60°C	75°C	90°C	[A]	60°C	75°C	90°C	60°C	[A]	75°C	90°C	60°C	75°C	90°C
			0.72				0.82						
			1.1]			1.2						
			2.0				1.2						
2.0	2.0	2.0	3.8				1.6				2.0		
	2.0	2.0	7.0	2.0	2.0	2.0	3.6	0.5	0.5	0.5	2.0	2.0	2.0
			10				3.5						
-			17				4.1						
3.5			24				6.4						
5.5	3.5		33				6.1				3.5		
			1.0				0.8						
			1.8				1.1						
			3.6				1.8						
2.0	2.0	2.0	5.1	2.0	2.0	2.0	1.8	0.5	0.5	0.5	2.0	2.0	2.0
			8.7				2.1						
			12	-			3.2						
			17				3.1						
			1.2	-			0.61						
			2.0	-			0.66						
2.0	2.0	2.0	3.5	2.0	2.0	2.0	0.82	0.5	0.5	0.5	2.0	2.0	2.0
			6.5	-			1.4						
			11.8 17.7	1			1.4 1.7						
			17.7	L			1.7						

3. Wire Size

3.3 Allowable current of insulation wire

■ IV wire (Maximum allowable temperature : 60°C)

Table 3.5 (a) Allowable current of insulation wire

	Allowable current		Wir	ing outside o	duct		Wiring in t	he duct (Ma	x. 3 wires in	one duct)
Wire size	reference value	35°C	40°C	45°C	50°C	55°C	35°C	40°C	45°C	50°C
[mm²]	(up to 30°C)	(l₀x0.91)	(I ₀ x0.82)	(l₀x0.71)	(I₀x0.58)	(I ₀ x0.41)	(l₀x0.63)	(I ₀ x0.57)	(I ₀ x0.49)	(I ₀ x0.40)
	I ₀ [A]	` [A]	` [A]	` [A]	` [A]	` [A]	` [A]	` [A]	` [A]	` [A]
2	27	24	22	19	15	11	17	15	13	10
3.5	37	33	30	26	21	15	23	21	18	14
5.5	49	44	40	34	28	20	30	27	24	19
8	61	55	50	43	35	25	38	34	29	24
14	88	80	72	62	51	36	55	50	43	35
22	115	104	94	81	66	47	72	65	56	46
38	162	147	132	115	93	66	102	92	79	64
60	217	197	177	154	125	88	136	123	106	86
100	298	271	244	211	172	122	187	169	146	119
150	395	359	323	280	229	161	248	225	193	158
200	469	426	384	332	272	192	295	267	229	187
250	556	505	455	394	322	227	350	316	272	222
325	650	591	533	461	377	266	409	370	318	260
400	745	677	610	528	432	305	469	424	365	298
500	842	766	690	597	488	345	530	479	412	336
2 x 100	497	452	407	352	288	203	313	283	243	198
2 x 150	658	598	539	467	381	269	414	375	322	263
2 x 200	782	711	641	555	453	320	492	445	383	312
2 x 250	927	843	760	658	537	380	584	528	454	370
2 x 325	1083	985	888	768	628	444	682	617	530	433
2 x 400	1242	1130	1018	881	720	509	782	707	608	496
2 x 500	1403	1276	1150	996	813	575	883	799	687	561

■ HIV wire (Maximum allowable temperature : 75°C)

Table 3.5 (b) Allowable current of insulation wire

	Allowable current		Wir	ing outside o	duct		Wiring in t	he duct (Ma	x. 3 wires in	one duct)
Wire size	reference value	35°C	40°C	45°C	50°C	55°C	35°C	40°C	45°C	50°C
[mm²]	(up to 30°C)	(l₀x1.15)	(l ₀ x1.08)	(l ₀ x1.00)	(I ₀ x0.91)	(I ₀ x0.82)	(I ₀ x0.80)	(I ₀ x0.75)	(I ₀ x0.70)	(I₀x0.63)
	I₀ x 1.22 [A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]
2	32	31	29	27	24	22	21	20	18	17
3.5	45	42	39	37	33	30	29	27	25	23
5.5	59	56	52	49	44	40	39	36	34	30
8	74	70	65	61	55	50	48	45	42	38
14	107	101	95	88	80	72	70	66	61	55
22	140	132	124	115	104	94	92	86	80	72
38	197	186	174	162	147	132	129	121	113	102
60	264	249	234	217	197	177	173	162	151	136
100	363	342	321	298	271	244	238	223	208	187
150	481	454	426	395	359	323	316	296	276	248
200	572	539	506	469	426	384	375	351	328	295
250	678	639	600	556	505	455	444	417	389	350
325	793	747	702	650	591	533	520	487	455	409
400	908	856	804	745	677	610	596	558	521	469
500	1027	968	909	842	766	690	673	631	589	530
2 x 100	606	571	536	497	452	407	397	372	347	313
2 x 150	802	756	710	658	598	539	526	493	460	414
2 x 200	954	899	844	782	711	641	625	586	547	492
2 x 250	1130	1066	1001	927	843	760	741	695	648	584
2 x 325	1321	1245	1169	1083	985	888	866	812	758	682
2 x 400	1515	1428	1341	1242	1130	1018	993	931	869	782
2 x 500	1711	1613	1515	1403	1276	1150	1122	1052	982	883

■ 600V cross-linking polyethylene insulation wire (Maximum allowable temperature: 90°C)

Table 3.5 (c) Allowable current of insulation wire

	Allowable current		Wir	ing outside o	duct		Wiring in t	he duct (Ma	x. 3 wires in	one duct)
Wire size	reference value	35°C	40°C	45°C	50°C	55°C	35°C	40°C	45°C	50°C
[mm ²]	(up to 30°C)	(l₀x1.35)	(l₀x1.29)	(l₀x1.22)	(l₀x1.15)	(l₀x1.08)	(l₀x0.94)	(l₀x0.90)	(I₀x0.85)	(l₀x0.80)
	I ₀ x 1.41[A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]	[A]
2	38	36	34	32	31	29	25	24	22	21
3.5	52	49	47	45	42	39	34	33	31	29
5.5	69	66	63	59	56	52	46	44	41	39
8	86	82	78	74	70	65	57	54	51	48
14	124	118	113	107	101	95	82	79	74	70
22	162	155	148	140	132	124	108	103	97	92
38	228	218	208	197	186	174	152	145	137	129
60	305	292	279	264	249	234	203	195	184	173
100	420	402	384	363	342	321	280	268	253	238
150	556	533	509	481	454	426	371	355	335	316
200	661	633	605	572	539	506	440	422	398	375
250	783	750	717	678	639	600	522	500	472	444
325	916	877	838	793	747	702	611	585	552	520
400	1050	1005	961	908	856	804	700	670	633	596
500	1187	1136	1086	1027	968	909	791	757	715	673
2 x 100	700	670	641	606	571	536	467	447	422	397
2 x 150	927	888	848	802	756	710	618	592	559	526
2 x 200	1102	1055	1008	954	899	844	735	703	664	625
2 x 250	1307	1251	1195	1130	1066	1001	871	834	787	741
2 x 325	1527	1462	1397	1321	1245	1169	1018	974	920	866
2 x 400	1751	1676	1602	1515	1428	1341	1167	1117	1055	993
2 x 500	1978	1894	1809	1711	1613	1515	1318	1262	1192	1122

4. Braking Unit and Braking Resistor

4. Braking Unit and Braking Resistor

4.1 FRENIC5000G11S/P11S Series

■ 200V series

Table 3.6 Braking unit and braking resistor (G11S-2 series)

				Option			Max	imum brakin	g torque [%]	Cont. br (100% to	aking	Repe	titive
Power		Braking	unit	Bra	king resis	tor		50 [Hz]	60 [Hz]	conversior		braking or less	
supply	Inverter type	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]		[N·m]	[N·m]	Dis- charging capability [kWs]	Brak- ing time [s]	Average loss [kW]	Duty cycle [%]
	FRN0.2G11S-2JE							1.99	1.65	9	90	0.037	37
	FRN0.4G11S-2JE			DB0.75-2	1	100		4.02	3.32	9	45	0.044	22
	FRN0.75G11S-2JE							7.57	6.25	17	45	0.068	18
	FRN1.5G11S-2JE			DB2.2-2	1	40		15.0	12.4	34	45	0.075	10
	FRN2.2G11S-2JE	_	_	002.2-2	'	70		22.0	18.2	33	30	0.077	7
	FRN3.7G11S-2JE			DB3.7-2	1	33	150	37.1	30.5	37	20	0.093	5
	FRN5.5G11S-2JE			DB5.5-2	1	20		54.3	45.0	55	20	0.138	5
Three-	FRN5.5G11S-2JE FRN7.5G11S-2JE FRN11G11S-2JE			DB7.5-2	1	15		73.6	61.6	37	10	0.188	5
phase			1	DB11-2	1	10		108	89.5	55	10	0.275	5
200V	FRN15G11S-2JE	BU3-185-2	1	DB15-2	1	8.6		147	122	75	10	0.375	5
	FRN18.5G11S-2JE		1	DB18.5-2	1	6.8		182	151	92	10	0.463	5
	FRN22G11S-2JE	BU3-220-2	1	DB22-2	1	5.8		216	179	88	8	0.550	5
	FRN30G11S-2JE	BU37-2C	1	DB30-2C	1	4.0		195	162	150	10	1.50	10
	FRN37G11S-2JE	BU37-2C	1	DB37-2C	1	3.0		240	200	185	10	1.85	10
	FRN45G11S-2JE	BU55-2C	1	DB45-2C	1	2.5	100	292	243	225	10	2.25	10
	FRN55G11S-2JE	BU33-2C	1	DB55-2C	1	2.0		359	298	275	10	2.75	10
	FRN75G11S-2JE	BLIOD OC	1	DB75-2C	1	1.5		487	405	375	10	3.75	10
	FRN90G11S-2JE	BU90-2C	1	DB90-2C	1	1.2		585	486	450	10	4.50	10

Table 3.7 Braking unit and braking resistor (P11S-2 series)

				Option			Max	imum brakin	g torque [%]	Cont. bra (100% to		Repe	
Power		Braking	unit	Bra	king resis	tor		50 [Hz]	60 [Hz]	conversion	ryalue)	braking (less c	ycle)
supply voltage	Inverter type	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]		[N·m]	[N·m]	Dis- charging capability [kWs]	Brak- ing time [s]	Average loss [kW]	Duty cycle [%]
	FRN5.5P11S-2JE			DB3.7-2	1	33		36.2	30.0	37	15	0.093	3.5
	FRN7.5P11S-2JE	_	_	DB5.5-2	1	20		49.1	41.0	55	15	0.138	3.5
	FRN11P11S-2JE			DB7.5-2	1	15		72.0	59.7	37	7	0.188	3.5
	FRN15P11S-2JE		1	DB11-2	1	10	100	98.1	81.4	55	7	0.275	3.5
	FRN18.5P11S-2JE	BU3-185-2	1	DB15-2	1	8.6		121	100	75	8	0.375	4
Three-	e- FRN22P11S-2JE		1	DB18.5-2	1	6.8		144	119	92	8	0.463	4
phase	FRN30P11S-2JE		1	DB30-2C	1	4.0		146	162	88	6	0.55	3.5
200V	FRN37P11S-2JE	BU37-2C	1	DB30-2C	1	4.0		180	150	150	8	1.50	8
	FRN45P11S-2JE		1	DB37-2C	1	3.0		219	182	185	8	1.85	8
	FRN55P11S-2JE	BU55-2C	1	DB45-2C	1	2.5	75	269	223	225	8	2.25	8
	FRN75P11S-2JE	BU33-2C	1	DB55-2C	1	2.0] / ɔ	365	303	275	7	2.75	7
	FRN90P11S-2JE	BU90-2C	1	DB75-2C	1	1.5		438	364	375	8	3.75	8
	FRN110P11S-2JE	DU90-2C	1	DB90-2C	1	1.2		534	444	450	8	4.50	8

NOTE: • Refer to Selection procedure and Notes on Selection.

NOTE: • Refer to Selection procedure and Notes on Selection.
• Maximum braking torque is based on the rated torque run by a commercial power supply.

[•] Maximum braking torque is based on the rated torque run by a commercial power supply.

Table 3.8 Braking unit and braking resistor (G11S-4 series)

				Option			Max	imum brakin	g torque [%]	Cont. br	aking	Repe	
Power		Braking	unit	Bra	king resis	tor	1	50 [Hz]	60 [Hz]	(100% to conversion		braking or less	
supply voltage	Inverter type □ : JE or EN	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]		[N·m]	[N·m]	Discharg- ing capability [kWs]	Brak- ing time [s]	Average loss [kW]	Duty cycle (%)
	FRN0.4G11S-4□			DB0.75-4	1	200		4.02	3.32	9	45	0.044	22
	FRN0.75G11S-4□			DB0.75 4		200		7.57	6.25	17	45	0.068	18
	FRN1.5G11S-4□			DB2.2-4	1	160		15.0	12.4	34	45	0.075	10
	FRN2.2G11S-4□			DB2.2 4		100]	22.0	18.2	33	30	0.077	7
	FRN3.7G11S-4[1]	-	_	DB3.7-4	1	130		37.1	30.5	37	20	0.093	5
	FRN5.5G11S-4□			DB5.5-4	1	80	150	54.5	45.1	55	20	0.138	5
	FRN7.5G11S-4□			DB7.5-4	1	60	1 1	74.3	61.6	38	10	0.188	5
	FRN11G11S-4□		1	DB11-4	1	40]	108	89.5	55	10	0.275	5
	FRN15G11S-4 FRN18.5G11S-4 FRN22G11S-4	BU3-220-4	1	DB15-4	1	34.4	1 1	147	122	75	10	0.375	5
400V		DU3-220-4	1	DB18.5-4	1	27	1 1	182	151	93	10	0.463	5
			1	DB22-4	1	22		216	179	88	8	0.550	5
	FRN30G11S-4□*2)	BU37-4C	1	DB30-4C	1	15	1 1	195	162	150	10	1.50	10
	FRN37G11S-4□	2007 10	1	DB37-4C	1	12	. I	240	200	185	10	1.85	10
	FRN45G11S-4□	BU55-4C	1	DB45-4C	1	10	1 1	292	243	225	10	2.25	10
	FRN55G11S-4□	2000 .0	1	DB55-4C	1	7.5		359	298	275	10	2.75	10
	FRN75G11S-4□	BU90-4C	1	DB75-4C	1	6.5	1 1	487	405	375	10	3.75	10
	FRN90G11S-4□	2000 .0	1	DB110-4C	1	4.7	1 1	585	486	450	10	4.5	10
	FRN110G11S-4□	BU132-4C	1	DB110-4C	1	4.7	1 1	712	592	550	10	5.5	10
	FRN132G11S-4□	20.02.0	1	DB132-4C	1	3.9	100		710	665	10	6.65	10
	FRN160G11S-4□		1	DB160-4C	1	3.2]	1036	861	800	10	8.0	10
	FRN200G11S-4□		1	DB200-4C	1	2.6		1295	1076	1000	10	10.0	10
	FRN220G11S-4		1	DB220-4C	1	2.2		1424	1184	1100	10	11.0	10
	FRN280G11S-4□	N315G11S-4□ 2 DB160-4C 2			1.6]	1813	1506	1600	11	16.0	11	
	FRN315G11S-4□				1.6	l l	2039	1695	1600	10	16.0	10	
	FRN350G11S-4JE			1.3		2298	1910	2000	11	20.0	11		
	FRN400G11S-4□		2	DB200-4C	2	1.3		2590	2152	2000	10	20.0	10

NOTE: • Refer to Selection procedure and Notes on Selection.

Table 3.9 Braking unit and braking resistor (P11S-4 series)

				Option			Max	imum brakin	g torque [%]	Cont. br		Repe	
Power		Braking	unit	Bra	king resis	tor	1	50 [Hz]	60 [Hz]	(100% to		braking or less	
supply	Inverter type	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]		[N·m]	[N·m]	Dis- charging capability [kWs]	Brak- ing time [s]	Aver- age loss [kW]	Duty cycle (%)
	FRN5.5P11S-4JE			DB3.7-4	1	130		36.3	30.1	37	15	0.093	3.5
	FRN7.5P11S-4JE	_	_	DB5.5-4	1	80		49.6	41.0	55	15	0.138	3.5
	FRN11P11S-4JE			DB7.5-4	1	60]	71.9	59.7	38	7	0.188	3.5
	FRN15P11S-4JE		1	DB11-4	1	40	100	98.1	81.4	55	7	0.275	3.5
	FRN18.5P11S-4JE	BU3-220-4	1	DB15-4	1	34.4	.	121	100	75	8	0.375	4
	FRN22P11S-4JE		1	DB18.5-4	1	27	.	144	119	93	8	0.463	4
	FRN30P11S-4JE		1	DB30-4C	1	15		180	150	88	6	0.55	3
400V	FRN37P11S-4JE	BU37-4C	1	DB30-4C	1	15	.	180	150	150	8	1.50	8
	FRN45P11S-4JE		1	DB37-4C	1	12	.	219	182	185	8	1.85	8
	FRN55P11S-4JE	BU55-4C	1	DB45-4C	1	10	.	269	223	225	8	2.25	8
	FRN75P11S-4JE	D000-4C	1	DB55-4C	1	7.5	.	365	303	275	7	2.75	7
	FRN90P11S-4JE	BU90-4C	1	DB75-4C	1	6.5	.	438	364	375	8	3.75	8
	FRN110P11S-1JE		1	DB110-4C	1	4.7	.	534	444	450	8	4.5	8
	FRN132P11S-4JE	BU132-4C	1	DB110-4C	1	4.7	.	641	533	550	8	5.5	8
	FRN160P11S-4JE		1	DB132-4C	1	3.9	75	777	646	665	8	6.65	8
	FRN200P11S-4JE		1	DB160-4C	1	3.2	.	971	807	800	8	8.0	8
	FRN220P11S-4JE		1	DB200-4C	1	2.6	.	1068	888	1000	9	10.0	9
	FRN280P11S-4JE		1	DB220-4C	1	2.2	.	1360	1130	1100	8	11.0	8
	FRN315P11S-4JE	BU220-4C	2	DB160-4C	2	1.6	.	1530	1271	1600	10	16.0	10
	FRN355P11S-4JE	BU220-4C	2	DB160-4C	2	1.6	.	1724	1432	1600	9	16.0	9
	FRN400P11S-4JE		2	DB200-4C	2	1.3	.	1942	1614	2000	10	20.0	10
	FRN450P11S-4JE		2	DB200-4C	2	1.3	.	2185	1816	2000	9	20.0	9
	FRN500P11S-4JE		2	DB200-4C	2	1.3		2428	2017	2000	8	20.0	8

NOTE: • Refer to Selection procedure and Notes on Selection.

Maximum braking torque is based on the rated torque run by a commercial power supply.
 *1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN
 *2) JE FRN30G11S-4JE EN FRN30G11S-4EV

[•] Maximum braking torque is based on the rated torque run by a commercial power supply.

4. Braking Unit and Braking Resistor

4.2 FVR-E11S Series

Table 3.10 Braking unit and braking resistor (E11S series)

					Option			Maxi	mum brakin	g torque [%]	Cont. bra (100% to	aking	Repe braking	
Power	Nominal		Braking	unit	Brak	ing resist	or		50 [Hz]	60 [Hz]	conversion		or less	
supply voltage	applied motor [kW]	Inverter type □: JE or EN	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]		[N·m]	[N·m]	Disc- harging capability [kWs]	Brak- ing time [s]	Aver- age loss [kW]	Duty cycle (%)
	0.1	FVR0.1E11S-2JE	Unnecessary	-					0.995	0.823	9	90	0.037	37
	0.2	FVR0.2E11S-2JE			DB0.75-2	1	100		1.99	1.65	9	90	0.037	37
	0.4	FVR0.4E11S-2JE			DD0.73-2	'	100		4.02	3.32	9	45	0.044	22
Three-	0.75	FVR0.75E11S-2JE							7.57	6.25	17	45	0.068	18
phase	1.5	FVR1.5E11S-2JE			DB2.2-2	1	40	150	15.0	12.4	34	45	0.075	10
200V	2.2	FVR2.2E11S-2JE			DD2.2 2	'	70		22.0	18.2	33	30	0.077	7
	3.7	FVR3.7E11S-2JE			DB3.7-2	1	33		37.1	30.5	37	20	0.093	5
	5.5	FVR5.5E11S-2JE			DB5.5-2	1	20		54.5	45.0	55	20	0.138	5
	7.5	FVR7.5E11S-2JE			DB7.5-2	1	15		74.4	61.6	37	10	0.188	5
	0.4	FVR0.4E11S-4□	Unnecessary	-	DB0.75-4	1	200		4.02	3.32	9	45	0.044	22
	0.75	FVR0.75E11S-4□			DB0.70 4		200		7.57	6.25	17	45	0.068	18
Three-	1.5	FVR1.5E11S-4□			DB2.2-4	1	160		15.0	12.4	34	45	0.075	10
phase	2.2	FVR2.2E11S-4□			DDZ.Z T		100	150	22.0	18.2	33	30	0.077	7
400V	3.7,4.0	FVR3.7E11S-4□ *1)			DB3.7-4	1	130		37.1	30.5	37	20	0.093	5
	5.5	FVR5.5E11S-4□			DB5.5-4	1	80		54.3	45.0	55	20	0.138	5
	7.5	FVR7.5E11S-4□			DB7.5-4	1	60		74.4	61.6	38	10	0.188	5
	0.1	FVR0.1E11S-7□	Unnecessary	-					0.995	0.823	9	90	0.037	37
Single-	0.2	FVR0.2E11S-7□			DB0.75-2	1	100		1.99	1.65	9	90	0.037	37
phase	0.4	FVR0.4E11S-7□			DD0.73-2	'	100	150	4.02	3.32	9	45	0.044	22
200V	0.75	FVR0.75E11S-7□						1130	7.57	6.25	17	45	0.068	18
200 V	1.5	FVR1.5E11S-7□			DB2.2-2	1	40		15.0	12.4	34	45	0.075	10
	2.2	FVR2.2E11S-7□			DD2.2-2	'	40		22.0	18.2	33	30	0.077	7

NOTE: *1) JE...FVR3.7E11S-4JE EN...FVR4.0E11S-4EN

5. Braking Unit and Braking Resistor (10% ED)

5.1 FRENIC5000G11S/P11S Series

[200V series]

■FRN □ □ □ G11S-2 series, FRN □ □ □ P11S-2 series

Table 3.11 Braking unit and braking resistor (G11S 200V series)

				Option			Max	imum braking	g torque [%]	Cont. br		Reper braking	
Power		Braking u	nit	Braki	ng resist	or] [50 [Hz]	60 [Hz]	conversior		or less	
supply voltage	Inverter type	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]		[N·m]	[N·m]	Disc- harging capability [kWs]	Brak- ing time [s]	Aver- age loss [kW]	Duty cycle (%)
	FRN0.2G11S-2JE							1.99	1.65	9	90	0.01	10
	FRN0.4G11S-2JE			DB0.75-2C	1	100		4.02	3.32	9	45	0.02	10
	FRN0.75G11S-2JE							7.57	6.25	17	45	0.0375	10
	FRN1.5G11S-2JE			DB2.2-2C	1	40		15.0	12.4	34	45	0.075	10
	FRN2.2G11S-2JE	_	_	DD2.2 20	'	40		22.0	18.2	33	30	0.11	10
	RN3.7G11S-2JE RN5.5G11S-2JE RN7.5G11S-2JE			DB3.7-2C	1	33]	37.1	30.5	37	20	0.185	10
Three-				DB5.5-2C	1	20	150	54.3	45.0	55	20	0.275	10
phase				DB7.5-2C	1	15		74.4	61.6	37	10	0.375	10
200V	FRN11G11S-2JE	BU3-220-2	1	DB11-2C	1	10		108	89.5	55	10	0.55	10
	FRN15G11S-2JE	D00 220 2	1	DB15-2C	1	8.6		147	122	75	10	0.75	10
	FRN18.5G11S-2JE	BU37-2C	1	DB22-2C	1	5.8		182	151	92	10	0.925	10
	FRN22G11S-2JE	D037-20	1	DB22-20	1	5.6		216	179	110	10	1.1	10
	FRN22G11S-2JE FRN5.5P11S-2JE FRN7.5P11S-2JE FRN11P11S-2JE FRN15P11S-2JE FRN18.5P11S-2JE			DB3.7-2C	1	33		36.2	30.0	37	15	0.185	10
		_	_	DB5.5-2C	1	20		49.6	41.0	55	15	0.275	10
				DB7.5-2C	1	15	100	72.0	59.7	37	7	0.375	10
		BU3-220-2	1	DB11-2C	1	10	100	98.1	81.4	55	7	0.55	10
		DU3-220-2	1	DB15-2C	1	8.6		121	100	75	7	0.75	7
	FRN22P11S-2JE	BU37-2C	1	DB22-2C	'	5.8		144	119	93	7	0.925	7

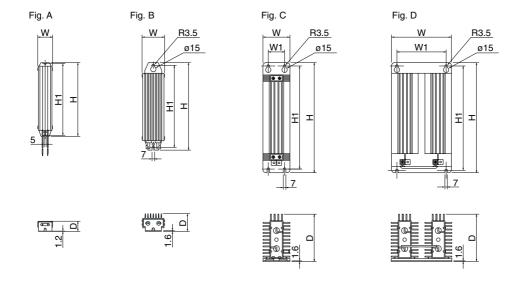
NOTE: • Refer to Selection procedure and Notes on Selection.

• Maximum braking torque is based on the rated torque run by a commercial power supply.

[400V series]

■FRN □ □ □ G11S-4 series, FRN □ □ □ P11S-4 series

Table 3.12 Braking unit and braking resistor (G11S 400V series)


				Option			Max	imum brakin	g torque [%]	Cont. br		Repe	
Power		Braking u	nit	Braki	ng resisto	or		50 [Hz]	60 [Hz]	(100% to conversion		braking or less	
supply voltage	Inverter type	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]		[N·m]	[N·m]	Dis- charging capability [kWs]	Brak- ing time [s]	Aver- age loss [kW]	Duty cycle (%)
	FRN0.4G11S-4□			DB0.75-4C	1	200	150	4.02	3.32	9	45	0.02	10
	FRN0.75G11S-4□			DD0.73 40	'			7.57	6.25	17	45	0.0375	10
	FRN1.5G11S-4□			DD0 0 40				15.0	12.4	34	45	0.075	10
	FRN2.2G11S-4□	_	_	DB2.2-4C	1			22.0	18.2	33	30	0.11	10
	FRN3.7G11S-4□			DB3.7-4C	1	130		37.1	30.5	37	20	0.185	10
	FRN5.5G11S-4□			DB5.5-4C	1	80		54.3	45.0	55	20	0.275	10
Three-	FRN7.5G11S-4□			DB7.5-4C	1	60		74.4	61.6	38	10	0.375	10
phase	FRN11G11S-4□	BU3-220-4	1	DB11-4C	1	40		108	89.5	55	10	0.55	10
400V	FRN15G11S-4□	D03-220-4	1	DB15-4C	1	34.4		147	122	75	10	0.75	10
	FRN18.5G11S-4□	BU37-4C	1	DB22-4C	1	22		182	151	92	10	0.925	10
	FRN22G11S-4□	D037-40	1	DB22-4C	1	22		216	179	110	10	1.1	10
	FRN5.5P11S-4□			DB3.7-4C	1	130		36.2	30.0	37	15	0.185	10
	FRN7.5P11S-4□	_	ı	DB5.5-4C	1	80		49.6	41.0	55	15	0.275	10
	FRN11P11S-4□	Ī		DB7.5-4C	1	60	100	72.0	59.7	38	7	0.375	10
	FRN15P11S-4□	BU3-220-4	1	DB11-4C	1	40]100	98.1	81.4	55	7	0.55	10
	FRN18.5P11S-4□	DU3-220-4	1	DB15-4C	4	34.4	.4	121	100	75	7	0.75	7
	FRN22P11S-4□	BU37-4C	1	DB22-4C	'	22		144	119	93	7	0.925	7

NOTE: • Refer to Selection procedure and Notes on Selection.

• Maximum braking torque is based on the rated torque run by a commercial power supply.

5. Braking Unit and Braking Resistor (10% ED)

- ■Dimensions, mm
 Braking resistor (10% ED)
 DB0.75-2C to DB22-2C
 DB0.75-4C to DB22-4C

Braking r	esistor type	F:	Dimensions [mm]									
200V class	400V class	Fig.	W	W1	Н	H1	D					
DB0.75-2C	DB0.75-4C	Α	43		221	215	30.5					
DB2.2-2C	DB2.2-4C		67		188	172	55					
DB3.7-2C	DB3.7-4C	В	67	_	328	312	55					
DB5.5-2C	DB5.5-4C		00		378	362	78					
DB7.5-2C	DB7.5-4C				418	402	/6					
DB11-2C	DB11-4C	С	80		460	440	140					
DB15-2C	DB15-4C			50	580	560	140					
DB22-2C	DB22-4C	D	180	144	400	383	145					

5.2 FVR-E11S Series

Table 3.13 Braking unit and braking resistor (E11S series)

					Option			Maxi	mum brakin	g torque [%]	Cont. br	aking	Repetitive braking (100s		
Power	Nominal		Braking	unit	Brak	ing resist	or	1	50 [Hz]	60 [Hz]	(100% to conversion	rque rvalue)	or less		
	applied motor [kW]	Inverter type ☐ : JE or EN	Туре	Q'ty	Туре	Q'ty	Total ohmic value [Ω]s		[N·m]	[N·m]	Disc- harging capability [kWs]	Brak- ing time [s]	Aver- age loss [kW]	Duty cycle (%)	
	0.1	FVR0.1E11S-2JE	Unnecessary	-		1	100		0.995	0.823	9	90	0.01	10	
	0.2	FVR0.2E11S-2JE			DB0.75-2C				2.01	1.66	9	90	0.01	10	
	0.4	FVR0.4E11S-2JE			DD0.73-20				4.02	3.32	9	45	0.02	10	
Three- phase 200V	0.75	FVR0.75E11S-2JE							7.57	6.25	17	45	0.0375	10	
	1.5	FVR1.5E11S-2JE			DB2.2-2C	1	40	150	15.0	12.4	34	45	0.075	10	
	2.2	FVR2.2E11S-2JE			DD2.2 20	'	40		22.0	18.2	33	30	0.11	10	
	3.7	FVR3.7E11S-2JE			DB3.7-2C	1	33		37.1	30.5	37	20	0.185	10	
	5.5	FVR5.5E11S-2JE			DB5.5-2C	1	20		54.5	45.1	55	20	0.275	10	
	7.5	FVR7.5E11S-2JE			DB7.5-2C	1	15		74.3	61.6	37	10	0.375	10	
	0.4	FVR0.4E11S-4□	Unnecessary	-	DB0.75-4C	1	200		4.02	3.32	9	45	0.02	10	
	0.75	FVR0.75E11S-4□			DD0.73 40	1	160	-	7.57	6.25	17	45	0.0375	10	
Three-	1.5	FVR1.5E11S-4□			DB2.2-4C				15.0	12.4	34	45	0.075	10	
phase	2.2	FVR2.2E11S-4□			DD2.2 40	'		150	22.0	18.2	33	30	0.11	10	
400V	3.7	FVR3.7E11S-4□ *1)			DB3.7-4C	1	130		37.1	30.5	37	20	0.185	10	
	5.5	FVR5.5E11S-4□			DB5.5-4C	1	80		54.5	45.1	55	20	0.275	10	
	7.5	FVR7.5E11S-4□			DB7.5-4C	1	60		74.3	61.6	38	10	0.375	10	
	0.1	FVR0.1E11S-7□	Unnecessary	-					0.995	0.823	9	90	0.01	10	
Single-	0.2	FVR0.2E11S-7□			DB0.75-2C	1	100		1.99	1.65	9	90	0.01	10	
phase	0.4	FVR0.4E11S-7□			000.73 20	'	100	150	4.02	3.32	9	45	0.02	10	
200V	0.75	FVR0.75E11S-7□						130	7.57	6.25	17	45	0.0375	10	
200V	1.5	FVR1.5E11S-7□			DB2.2-2C	1	40		15.0	12.4	34	45	0.075	10	
	2.2	FVR2.2E11S-7□			DDL.2-20	'	70		22.0	18.2	33	30	0.11	10	

NOTE: *1) JE...FVR3.7E11S-4JE EN...FVR4.0E11S-4EN

6. Rated Sensitive Current of ELCB

6. Rated Sensitive Current of ELCB

Table 3.14 Rated sensitive current of ELCB

Power	Nominal		Inverter type	eu sensitive cui	Rated current		irina le	ngth ar	nd sens	sitive cu	ırrent
supply	applied motor	0.110			of nominal applied						
voltage	[kW]	G11S series (□ : JE or EN)	P11S series	E11S Series (□: JE or EN)	motor [A]	10m	30m	50m	100m	200m	300m
	0.1	_		FVR0.1E11S-2JE	0.68						
	0.2	FRN0.2G11S-2JE		FVR0.2E11S-2JE	1.4					i	
	0.4	FRN0.4G11S-2JE		FVR0.4E11S-2JE	2.3		ı	ı		ı	
	0.75	FRN0.7511S-2JE	_	FVR0.75E11S-2JE	3.6		<u> </u>	l		l	
	1.5	FRN1.5G11S-2JE		FVR1.5E11S-2JE	6.5					l	
	2.2	FRN2.2G11S-2JE		FVR2.2E11S-2JE	9.2		30mA				
	3.7	FRN3.7G11S-2JE		FVR3.7E11S-2JE	15		I	ı		i I	
	5.5	FRN5.5G11S-2JE	FRN5.5P11S-2JE	FVR5.5E11S-2JE	22		1	l		I	
Thus	7.5	FRN7.5G11S-2JE	FRN7.5P11S-2JE	FVR7.5E11S-2JE	29				100mA	l	
Three-	11	FRN11G11S-2JE	FRN11P11S-2JE		42						
phase	15	FRN15G11S-2JE	FRN15P11S-2JE		55						
200V	18.5	FRN18.5G11S-2JE	FRN18.5P11S-2JE		67					200mA ₁	
	22	FRN22G11S-2JE	FRN22P11S-2JE		78		I	1		I	
	30	FRN30G11S-2JE	FRN30P11S-2JE		107						
	37	FRN37G11S-2JE	FRN37P11S-2JE	_	130						
	45	FRN45G11S-2JE	FRN45P11S-2JE		156						
	55	FRN55G11S-2JE	FRN55P11S-2JE		198			ı		I	
	75	FRN75G11S-2JE	FRN75P11S-2JE		271		i				500mA
	90	FRN90G11S-2JE	FRN90P11S-2JE		315		l			- 1	
	110	_	FRN110P11S-2JE		383						
	0.4	FRN0.4G11S-4□		FVR0.4E11S-4□	1.2						
	0.75	FRN0.7511S-4□		FVR0.75E11S-4□	1.8		i .	i			
	1.5	FRN1.5G11S-4□	_	FVR1.5E11S-4□	3.3		I				
	2.2	FRN2.2G11S-4□		FVR2.2E11S-4□	4.6						
	3.7, 4.0	FRN3.7G11S-4[*1)		FVR3.7E11S-4□ *3)	7.5	30mA					
	5.5	FRN5.5G11S-4□	FRN5.5P11S-4JE	FVR5.5E11S-4□	11						
	7.5	FRN7.5G11S-4□	FRN7.5P11S-4JE	FVR7.5E11S-4□	14.5		I		1		
	11	FRN11G11S-4□	FRN11P11S-4JE	-	21			100mA			
	15	FRN15G11S-4□	FRN15P11S-4JE		27.5						
	18.5	FRN18.5G11S-4□	FRN18.5P11S-4JE		34						
	22	FRN22G11S-4□	FRN22P11S-4JE		39			ı	200mA	i	
	30	FRN30G11S-4□*2)	FRN30P11S-4JE		54			ı			
	37	FRN37G11S-4□	FRN37P11S-4JE		65						
Three-	45	FRN45G11S-4□	FRN45P11S-4JE		78					500mA	
phase	55	FRN55G11S-4□	FRN55P11S-4JE		99						
400V	75	FRN75G11S-4□	FRN75P11S-4JE		135		i i	ı		i	
	90	FRN90G11S-4□	FRN90P11S-4JE		160						
	110	FRN110G11S-4	FRN110P11S-4JE	_	192						
	132	FRN132G11S-4□	FRN132P11S-4JE		226						1000mA
	160	FRN160G11S-4□	FRN160P11S-4JE		265					i	(Non standard)
	200	FRN200G11S-4	FRN200P11S-4JE		336			1		ı	(**************************************
	220	FRN220G11S-4	FRN220P11S-4JE		396					1	
	280	FRN280G11S-4	FRN280P11S-4JE		500					!	
	315	FRN315G11S-4	FRN315P11S-4JE								
	355	FRN355G11S-4JE	FRN355P11S-4JE								
	400	FRN400G11S-4	FRN400P11S-4JE				Co	ntact F	iuii.		
	450		FRN450P11S-4JE				00	illaot i	ω _j .		
	500	_	FRN500P11S-4JE								
	0.1		11110001 110-40L	FVR0.1E11S-7□	1						
	0.1			FVR0.1E113-7	1						
Single-	0.2			FVR0.4E11S-7	1						
phase	0.4	_	_		Contact Fuji						
200V	1.5			FVR0.75E11S-7□ FVR1.5E11S-7□							
					_						
	2.2			FVR2.2E11S-7□							

NOTE: Rated current of nominal applied motor is based on the value of Fuji standard motor (4 pole, 200V, 50Hz).

*1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

*2) JE FRN30G11S-4JE EN FRN30G11S-4EV EN FRN30G11S-4EV EN FVR4.0E11S-4EN

7. Input Circuit Noise Filter (EMC Compliance Filter)

7.1 FRENIC5000G11S/P11S Series

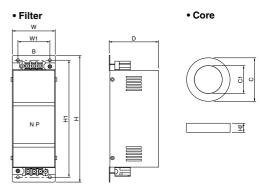


Table 3.15 Input circuit noise filter (EMC Compliance Filter, 200V)

Power	Nominal	Inverte	er type	Filter					Core			Fil		Core				
supply	applied	0440	P11S series	Tuna	Rated	Rated Leakage		Turno	Q'ty	Dimensions [mm]					Mass	Dimensions [mm]		[mm]
voltage	motor [kW]	G11S series	P115 series	Туре	voltage [V]	current [A]	current [mA]	туре	άty	8	W1	Н	H1	D	[kg]	С	C1	H2
	0.2	FRN0.2G11S-2JE			_		4.2	OF1										
	0.4	FRN0.4G11S-2JE		EFL-0.75SP-2		6			4	85	59	243	228	93	1.5	51	25	17
	0.75	FRN0.75G11S-2JE	_						'									<u> </u>
	1.5	FRN1.5G11S-2JE		EFL-3.7SP-2			'											1
Three-	2.2	FRN2.2G11S-2JE			200	25				105	80	233	215	136	2.5			
phase	3.7	FRN3.7G11S-2JE			to 230			OF2								69	43	16
200V	5.5	FRN5.5G11S-2JE	FRN5.5P11S-2JE	EFL-7.5SP-2		50	9			120	95	273	254	158	5			1
	7.5	FRN7.5G11S-2JE	FRN7.5P11S-2JE	LI L-7.55F-2		30				0	00	_, 0		.00				
	11	FRN11G11S-2JE	FRN11P11S-2JE	EFL-15SP-2		100			3	205							97 75	1
	15	FRN15G11S-2JE	FRN15P11S-2JE	LI L-155F-2		100	23	OF3			160	513	487	193	20	97		25
	18.5	FRN18.5G11S-2JE	FRN18.5P11S-2JE	EFL-22SP-2		150						0.0	.07		-0	"		
	22	FRN22G11S-2JE	FRN22P11S-2JE			130												

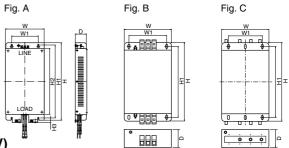


Table 3.16 Input circuit noise filter (EMC Compliance Filter, 400V)

Power	Nominal applied	Inverte	er type	EMC	Rated	Rated	Leakage current [mA]	Fig			Di	mensio	ons [m	m]		
supply voltage	motor [kW]	G11S series ☐ : JE or EN	P11S series	filter Type	voltage [V]	current [A]			w	W1	Н	H1	H2	НЗ	D	Mtg, screw
	0.4 0.75	FRN0.4G11S-4 FRN0.7511S-4		EFL-0.75G11-4		5	72		116	90	310	293	265	10	42	M5
	1.5 2.2 3.7,4.0	FRN1.5G11S-4 FRN2.2G11S-4 FRN3.7G11S-4 T1)	_	EFL-4.0G11-4	380	12	105		155	105	310	293	265	10	45	M5
	5.5 7.5	FRN5.511S-4 FRN7.5G11S-4	FRN5.5P11S-4JE FRN7.5P11S-4JE	EFL-7.5G11-4	to 480	35	105	Α	225	167	331	311	260	10	47.5	M8
	11 15	FRN11G11S-4□ FRN15G11S-4□	FRN11P11S-4JE FRN15P11S-4JE	EFL-15G11-4		50	158		250	185	480	449	400	20	70	M8
	18.5 22	FRN18.5G11S-4 FRN22G11S-4	FRN18.5P11S-4JE FRN22P11S-4JE	EFL-22G11-4		72	105		250	185	480	449	400	20	70	M8
	30	FRN30G11S-4 = *2)	FRN30P11S-4JE	RF-3100-F11		100			200	166	435	408	-	-	130	M6
Three-	37	FRN37G11S-4□	FRN37P11S-4JE			180										
phase	45	FRN45G11S-4□	FRN45P11S-4JE				130	В								
400V	55	FRN55G11S-4□	FRN55P11S-4JE	RF-3180-F11	380			_ D	200	166	495	468	-	_	160	M6
	75	FRN75G11S-4□	FRN75P11S-4JE							Í I						
	90	FRN90G11S-4□	FRN90P11S-4JE													
	110	FRN110G11S-4□	FRN110P11S-4JE	RF-3280-F11	to	280			250	170	587	560	l _	_	205	M6
	132	FRN132G11S-4□	FRN132P11S-4JE	111 0200 1 11	480]		200	.,,	007	000			200	1410
	160	FRN160G11S-4□	FRN160P11S-4JE				270	С								
	200	FRN200G11S-4□	FRN200P11S-4JE	RF-3400-F11		400	270	C	250	170	587	560	-	_	205	M6
	220	FRN220G11S-4□	FRN220P11S-4JE													
	280	FRN280G11S-4□	FRN280P11S-4JE	RF-3880-F11		880			364	300	688	648	_	_	180	M8
	315	FRN315G11S-4□	FRN315P11S-4JE	111 -3000-1 11		000			304	300	000	040			100	IVIO
	355	FRN355G11S-4JE	FRN355P11S-4JE													
	400	FRN400G11S-4□	FRN400P11S-4JE				,	Conto	s+ E:							
	450		FRN450P11S-4JE													
	500	_	FRN500P11S-4JE													

NOTES: *1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN EN FRN30G11S-4EV

7. Input Circuit Noise Filter (EMC Compliance Filter)

7.2 FVR-E11S Series

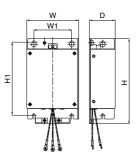


Table 3.17 Input circuit noise filter (EMC Compliance Filter, 200V)

Power	Nominal	Inverter type		Filter						Filter											
supply	applied motor	☐ : JE or EN	Tumo	Rated	Rated	Leakage	Dimens	ions [mr	n]			Mass									
voltage	[kW]	: JE OF EN	Type	voltage [V]	current [A]	current [mA]	W	W1	Н	H1	D	[kg]									
	0.1	FVR0.1E11S-2JE																			
	0.2	FVR0.2E11S-2JE	EFL-0.75E11-2		6.5	3.0	75	60	135	122.5	60	0.5									
	0.4	FVR0.4E11S-2JE	LI L-0.75L11-2	200	0.5	3.0	'3	00	100	122.5	00	0.5									
Three-	0.75	FVR0.75E11S-2JE																			
phase	1.5	FVR1.5E11S-2JE		to	26	3.0															
200V	2.2	FVR2.2E11S-2JE	EFL-4.0E11-2	230			100	80	158	130	80	1.1									
	3.7	FVR3.7E11S-2JE																			
	5.5	FVR5.5E11S-2JE	EFL-7.5E11-2		53	11	137	100	200	170	115	2.7									
	7.5	FVR7.5E11S-2JE	LI L-7.5L 11-2		55	'''	107	100	200	170	113	2.1									
	0.4	FVR0.4E11S-4 🗌	EFL-0.75E11-4		5	12	110	80	191	165	41	0.8									
	0.75	FVR0.75E11S-4□	LI L-0.75L11-4	380 to	3	12	110	00	191	105	41	0.0									
Three-	1.5	FVR1.5E11S-4 🗌	EFL-2.2E11-4		10	12	110	80	191	165	41	1.0									
phase	2.2	FVR2.2E11S-4 🗌	LI L-2.2L11-4																		
400V	3.7,4.0	FVR3.7E11S-4 - *1)	EFL-4.0E11-4	480	15	12	174	145	191	165	46	1.4									
	5.5	FVR5.5E11S-4 🗌	EFL-7.5E11-4		30	25	182	145	278	252	50	1.9									
	7.5	FVR7.5E11S-4□	LIL 7.3LII 4			20	102	143	270	202	50	1.0									
	0.1	FVR0.1E11S-7																			
Single-	0.2	FVR0.2E11S-7 🗌	EFL-0.4E11-7	200	6.5	21	71	55	189	178	36	0.5									
phase	0.4	FVR0.4E11S-7 🗌		to																	
200V	0.75	FVR0.75E11S-7	EFL-0.75E11-7		18	21	110	80	191	165	36	0.8									
	1.5	FVR1.5E11S-7 □	EFL-2.2E11-7	240	1 240	240	240	7 240	7 240	7 240	1 240	240	7 240	29	21	174	145	191	165	41	1.2
	2.2	FVR2.2E11S-7□			23	-	'/4	145	131	100	71	1.2									

NOTES:*1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

8. Output Circuit Noise Filter (OFL- 🗆 🗆 -2/4)

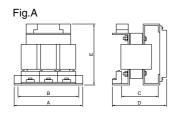
Table 3.18 Output circuit noise filter (OFL- \square -2/4)

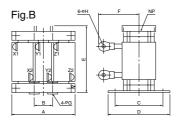
	Nominal		Inverter type	•	`		,	Invertor	Maximum	Carrier	Approx.
	applied		7.		Filter type		Overload	power		frequency	mass
supply voltage	motor [kW]	G11S series (□ : JE or EN)	P11S series	E11S Series (□ : JE or EN)		current [A]	capability	input voltage		allowable range *4)	
	0.1	_		FVR0.1E11S-2JE							
	0.2	FRN0.2G11S-2JE	_	FVR0.2E11S-2JE	OFL-0.4-2	3					7
	0.4	FRN0.4G11S-2JE	-	FVR0.4E11S-2JE							
		FRN0.75G11S-2JE	_	FVR0.75E11S-2JE	OFL-1.5-2	8					9.5
	1.5	FRN1.5G11S-2JE	-	FVR1.5E11S-2JE	0.2 2						
		FRN2.2G11S-2JE	-	FVR2.2E11S-2JE	OFL-3.7-2	17	150% for				15
	3.7	FRN3.7G11S-2JE		FVR3.7E11S-2JE	0. 2 0 2	• • •	60s,		400Hz	8 to	
	5.5		FRN5.5P11S-2JE	FVR5.5E11S-2JE	OFL-7.5-2	33	200% for	3-phase		15kHz	23
Th	7.5	FRN7.5G11S-2JE		FVR7.5E11S-2JE			0.5s	200 to			
Three- phase	11			-	OFL-15-2	59		230V			38
200V	15		FRN15P11S-2JE			-		50/60Hz			
	18.5		FRN18.5P11S-2JE		OFL-22-2	87					46
	22	FRN22G11S-2JE									
	30	FRN30G11S-2JE			OFL-30-2	115	150% for				38
	37	FRN37G11S-2JE		_	OFL-37-2	145	60s,			6kHz	44
	45	FRN45G11S-2JE			OFL-45-2	180	180% for		120Hz	or	48
	55	FRN55G11S-2JE			OFL-55-2	215	0.5s			higher	66
	75	FRN75G11S-2JE			OFL-75-2	285					78
	90	FRN90G11S-2JE	FRN90P11S-2JE		OFL-90-2	_		Contact	Fuji		
	110	-	FRN110P11S-2JE	=	OFL-110-2	.			,		
		FRN0.4G11S-4		FVR0.4E11S-4	OFL-0.4-4	1.5					7
	0.75	FRN0.75G11S-4	<u> </u> 	FVR0.75E11S-4	OFL-1.5-4	3.7					7
	1.5	FRN1.5G11S-4	_	FVR1.5E11S-4□ FVR2.2E11S-4□			1500/ for				
	2.2	FRN2.2G11S-4	-		OFL-3.7-4	9	150% for		400Hz	8 to	12
	5.5	FRN3.7G11S-4□*1)	EDNE ED110 4 IE	FVR3.7E11S-4 * 3)			60s, 200% for				
	7.5	FRN5.5G11S-4□ FRN7.5G11S-4□	FRN5.5P11S-4JE FRN7.5P11S-4JE	FVR5.5E11S-4□ FVR7.5E11S-4□	OFL-7.5-4	18	0.5s		40002	15kHz	19
	11	FRN11G11S-4	FRN11P11S-4JE	FVN7.3E113-4			0.58			ISKIIZ	
	15		FRN15P11S-4JE		OFL-15-4	30		3-phase			33
	18.5						-	380 to			
	22		FRN22P11S-4JE		OFL-22-4	45		460V			43
	30		FRN30P11S-4JE		OFL-30-4	60		50/60Hz			38
	37		FRN37P11S-4JE		OFL-37-4	75		30/00112			46
Three-	45	FRN45G11S-4□	FRN45P11S-4JE	-	OFL-45-4	91	-				55
phase 400V	55	FRN55G11S-4	FRN55P11S-4JE		OFL-55-4	112	-				68
1001			FRN75P11S-4JE		OFL-75-4	150	150% for			6kHz	80
	90		FRN90P11S-4JE		OFL-90-4	176	60s,		120Hz	or	98
	110		FRN110P11S-4JE	_	OFL-110-4	210	180% for		120112	higher	115
	132		FRN132P11S-4JE		OFL-132-4	253	0.5s				130
	160		FRN160P11S-4JE		OFL-160-4	304	0.00				155
	200		FRN200P11S-4JE		OFL-200-4	377					185
	220		FRN220P11S-4JE	1	OFL-220-4	415	1				200
	280		FRN280P11S-4JE	1	OFL-280-4				1	1	
	315		FRN315P11S-4JE	1	OFL-315-4	1					
	355		FRN355P11S-4JE	1	OFL-355-4	1	_				
	400		FRN400P11S-4JE	1	OFL-400-4	1	Cor	ntact Fuji			
	450	-	FRN450P11S-4JE	1	OFL-450-4	1					
	500	_	FRN500P11S-4JE		OFL-500-4	1					
			,	1	, J JUU T	1					

NOTES: • For the model of 30kW or larger, capacitor will be installed separately.

*1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN

^{*2)} JE FRN30G11S-4JE EN FRN30G11S-4EN or FRN30G11S-4EV

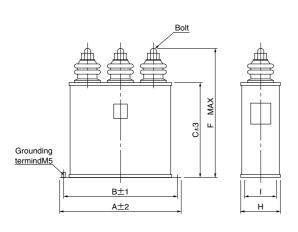

^{*3)} JE FVR3.7E11S-4JE EN FVR4.0E11S-4EN


^{*4)} This filter should be used within the carrier frequency allowable range.

8. Output Circuit Noise Filter (OFL- 🗌 🗀 -2/4)

■ Dimensions, mm

• Filter



Power supply voltage	type	Fig.	Α	В	С	D	E	F	Earth terminal	Terminal screw H	Mounting screw G	Approx. mass[kg]	
	OFL-0.4-2				95	470	195					7	
	OFL-1.5-2	1	220	200	105	170	0.15		M4	M4	M5	9.5	
	OFL-3.7-2	1.			135	200	215					15	
	OFL-7.5-2	Α	280	250	160	250	230	_	M5	MC	M6	23	
Three-	OFL-15-2		300	270	170	270	320		M6	M6	M8	38	
phase	OFL-22-2		300	270	180	300	330		IVIO	M8	IVIB	46	
200V	OFL-30-2		280	95	200	230	0.45	160		6.4	10	38	
200 V	OFL-37-2		280	95	210	240	345	170		8.4	10	44	
	OFL-45-2	В			200	240	400	170	_	0.4		48	
	OFL-55-2		330	110	215	255	420	180		10.5	12	66	
	OFL-75-2				240	280	430	190		10.5		78	
	OFL-0.4-4				95	170	195					7	
	OFL-1.5-4		220	200	95	170	193		M4	M4	M5	7	
	OFL-3.7-4	A			115	190	225					12	
	OFL-7.5-4	_ ^	290	260	140	230	230		M5	M5	M6	19	
	OFL-15-4		330	300	145	255	310		M6	M6	M8	33	
	OFL-22-4		330	300	170	290	330		IVIO	IVIO	IVIO	43	
Three-	OFL-30-4		280	95	200	230	345	150			10	38	
phase	OFL-37-4		200	95	215	245	355	170		6.4	10	46	
400V	OFL-45-4				200	240	400	170				55	
400 V	OFL-55-4		330	110	215	255	420	180		8.4	12	68	
	OFL-75-4				230	270	430		_	0.4		80	
	OFL-90-4	В			260	300	480	190	_	10.5		98	
	OFL-110-4		360	120	275	315	400			10.5		115	
	OFL-132-4				295	335	490	200			15	130	
	OFL-160-4	<u> </u>	.	390	130	285	325	550	210		13	13	155
	OFL-200-4]	390	130	305	345	570	230		'5		185	
	OFL-220-4		420	140	310	360	580	240				200	

• Capacitor

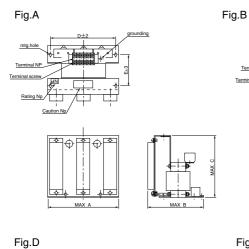
The capacitor for the filter OFL-30- or larger has to be installed separatery. (The capacitor mass is not included in the filter mass on the above table.)

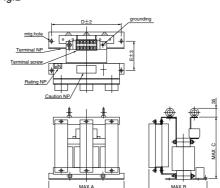
Power	Filter type		Ca	pacitor	dimens	ions [m	m]	
supply voltage	i liter type	Α	В	С	F	Н	-	Bolt
	OFL-30-2	165	150	120	150			M5
Three-	OFL-37-2	165	150	150	185	70	40	CIVI
phase	OFL-45-2	205	190	150	200	70	40	M6
200V	OFL-55-2	205	190	150	200			IVIO
	OFL-75-2	280	265	180	270	10.5	55	M12
	OFL-30-4			100	135			
	OFL-37-4			100	100			M5
	OFL-45-4	165	150	120	155			IVIS
Three-	OFL-55-4				133	70	40	
phase	OFL-75-4				185			M6
400V	OFL-90-4	205	190	150	200			IVIO
	OFL-110-4	203	130		200			
	OFL-132-4			180	270			
	OFL-160-4	280	265	100	270	90	55	M12
	OFL-200-4	200	200	200	290	30	55	
1	OFL-220-4			230	320			

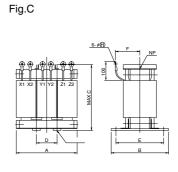
9. Output Circuit Noise Filter (OFL- 🗌 🗀 -4A)

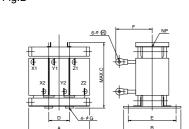
9. Output Circuit Noise Filter (OFL- □□-4A)

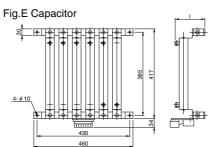
Table 3.19 Output circuit noise filter (OFL- -4A)


			Table 3.19 C	output circuit no	ise ilitei (Oi		-4A)		-	
_	Nominal		Inverter type					Inverter	Carrier	Maximum
Power supply voltage	applied motor [kW]	G11S series (□ : JE or EN)	P11S series	E11S Series (□ : JE or EN)	Filter type	Rated current [A]	Overload capability	power input voltage	frequency allowable range	frequency
	0.4	FRN0.4G11S-4□		FVR0.4E11S-4□	OFL-0.4-4A	1.5				
	0.75	FRN0.75G11S-4		FVR0.75E11S-4□	051 4 5 44	0.7				
	1.5	FRN1.5G11S-4□	_	FVR1.5E11S-4□	OFL-1.5-4A	3.7				
	2.2	FRN2.2G11S-4□		FVR2.2E11S-4□	OFL-3.7-4A	9	150%-			
	3.7	FRN3.7G11S-4[*1)		FVR3.7E11S-4□ *3)	OFL-3.7-4A	9	1min,			
	5.5	FRN5.5G11S-4□	FRN5.5P11S-4JE	FVR5.5E11S-4□	OFL-7.5-4A	18			0.75 to	
	7.5	FRN7.5G11S-4□	FRN7.5P11S-4JE	FVR7.5E11S-4□	OFL-7.5-4A	10	200%-		15kHz	
	11	FRN11G11S-4□	FRN11P11S-4JE		OFL-15-4A	30	0.5s		IOKIIZ	
	15	FRN15G11S-4□	FRN15P11S-4JE		OFL-15-4A	30		Three-		
	18.5	FRN18.5G11S-4□	FRN18.5P11S-4JE		OFL-22-4A	45		phase		
	22	FRN22G11S-4□	FRN22P11S-4JE		OFL-22-4A	45				
	30	FRN30G11S-4□*2)	FRN30P11S-4JE		OFL-30-4A	60		380 to		400Hz
T I	37	FRN37G11S-4□	FRN37P11S-4JE		OFL-37-4A	75		480V		
Three- phase	45	FRN45G11S-4□	FRN45P11S-4JE		OFL-45-4A	91				
200V	55	FRN55G11S-4□	FRN55P11S-4JE		OFL-55-4A	112		50/60HZ		
	75	FRN75G11S-4□	FRN75P11S-4JE		OFL-75-4A	150	150%-			
	90	FRN90G11S-4□	FRN90P11S-4JE		OFL-90-4A	176	1min,		0.75 to	
	110	FRN110G11S-4□	FRN110P11S-4JE	_	OFL-110-4A	210			10kHz	
	132	FRN132G11S-4□	FRN132P11S-4JE		OFL-132-4A		180%-		TORTIZ	
	160		FRN160P11S-4JE	-	OFL-160-4A	304	0.5s			
	200		FRN200P11S-4JE	1	OFL200-4A					
	220	FRN220G11S-4□	FRN220P11S-4JE		OFL-220-4A	415				
	280		FRN280P11S-4JE		OFL-280-4A	520				
	315	FRN315G11S-4□	FRN315P11S-4JE		OFL-315-4A					
	355		FRN355P11S-4JE		OFL-355-4A					
	400	FRN400G11S-4□	FRN400P11S-4JE		OFL-400-4A		Contac	t Fuji		
	450	_	FRN450P11S-4JE		OFL-450-4A	1				
	500	_	FRN500P11S-4JE		OFL-500-4A					


NOTES: *1) JE FRN3.7G11S-4JE EN FRN4.0G11S-4EN


*2) JE FRN30G11S-4JE EN FRN30G11S-4EN or FRN30G11S-4EV *3) JE FVR3.7E11S-4JE EN FVR4.0E11S-4EN


9. Output Circuit Noise Filter (OFL- 🗌 🗀 -4A)


■ Dimensions, mm • Filter

The capacitor for the filter OFL-30-4A or larger has to be installed separately. (The capacitor mass is not included in the filter mass on the table below.)

Power						D	imensi	ons [m	m]				Approx.		
supply voltage	Filter type	Fig.	Α	В	С	D	Е	F	ı	Ground terminal	Terminal screw H	Mounting screw G	mass[kg]		
	OFL-0.4-4A			175	195		95						7		
	OFL-1.5-4A	A	220	175	195	200	95			M4	M4	M5	7		
	OFL-3.7-4A] ^		225	220		115						14		
	OFL-7.5-4A		290	290	230	260	160	_	_	M5	M5	M6	22		
	OFL-15-4A	В	330	275	310	300	145			M6	M6	M8	35		
	OFL-22-4A		330	300	330	300	170			IVIO	IVIO	IVIO	45		
	OFL-30-4A	С	210	175	210	70	140	90			6.4	8	12		
	OFL-37-4A		220	190	220	75	150	95	160		0.4	0	15		
Three-	OFL-45-4A		220	195	265	70	155	140	100		8.4	10	17		
phase	OFL-55-4A			200	275		160	150			0.4	10	22		
400V	OFL-75-4A		260	210	290	85	170	130					25		
	OFL-90-4A	D		210	290		170	155			10.5		28		
	OFL-110-4A			230	330		190	170	233	_		12	38		
	OFL-132-4A	F	300	240	340	100	200	170					42		
	OFL-160-4A	_		240	340		200	180					48		
	OFL-200-4A		320	270	350	105	220	100			13		60		
	OFL-220-4A		340	300	390	115	250	190	333	3				15	70
	OFL-280-4A		350	300	430	113	230	200					78		

10. DC REACTOR (DCR)

■This REACTOR is mainly used for normalizing the power supply or improving power-factor (reducing harmonics).

10.1 FRENIC5000G11S/P11S Series

Table 3.20 DC REACTOR (DCR), G11S/P11S series

Power	Nominal applied	Inverter type	(JE version)	Inverter type (I	EN, EV version)	DC REACTOR (DCR)			
supply voltage	motor [kW]	G11S series	P11S series	CT use	VT use	Туре	Rated current [A]	Inductance [mH]	Generated loss [W]
	0.2	FRN0.2G11S-2JE				DCR2-0.2	1.5	20	1.2
	0.4	FRN0.4G11S-2JE				DCR2-0.4	3.0	12	1.7
	0.75	FRN0.75G11S-2JE				DCR2-0.75	5.0	7.0	2.7
	1.5	FRN1.5G11S-2JE	_			DCR2-1.5	8.0	4.0	4.2
	2.2	FRN2.2G11S-2JE				DCR2-2.2	11	3.0	6.5
	3.7	FRN3.7G11S-2JE				DCR2-3.7	18	1.7	9.1
	5.5	FRN5.5G11S-2JE	FRN5.5P11S-2JE			DCR2-5.5	25	1.2	14
	7.5	FRN7.5G11S-2JE	FRN7.5P11S-2JE			DCR2-7.5	34	0.8	16
Three-	11	FRN11G11S-2JE	FRN11P11S-2JE			DCR2-11	50	0.6	24
phase	15	FRN15G11S-2JE	FRN15P11S-2JE	_	_	DCR2-15	67	0.4	28
200V	18.5	FRN18.5G11S-2JE	FRN18.5P11S-2JE			DCR2-18.5	81	0.35	31
	22	FRN22G11S-2JE	FRN22P11S-2JE			DCR2-22A	98	0.3	37
	30	FRN30G11S-2JE	FRN30P11S-2JE			DCR2-30B	136	0.23	37
	37	FRN37G11S-2JE	FRN37P11S-2JE			DCR2-37B	167	0.19	47
	45	FRN45G11S-2JE	FRN45P11S-2JE			DCR2-45B	203	0.16	52
	55	FRN55G11S-2JE	FRN55P11S-2JE			DCR2-55B	244	0.13	55
	75	FRN75G11S-2JE	FRN75P11S-2JE			DCR2-75B	341	0.080	55
	90	FRN90G11S-2JE	FRN90P11S-2JE			DCR2-90B	410	0.067	57
	110	_	FRN110P11S-2JE			DCR2-110B	526	0.055	67
	0.4	FRN0.4G11S-4JE		FRN0.4G11S-4EN		DCR4-0.4	1.5	50	1.5
	0.75	FRN0.75G11S-4JE		FRN0.75G11S-4EN		DCR4-0.75	2.5	30	2.1
	1.5	FRN1.5G11S-4JE	_	FRN1.5G11S-4EN		DCR4-1.5	4.0	16	4.6
	2.2	FRN2.2G11S-4JE		FRN2.2G11S-4EN	_	DCR4-2.2	5.5	12	6.7
	3.7, 4.0	FRN3.7G11S-4JE		FRN4.0G11S-4EN		DCR4-3.7	9.0	7.0	8.5
	5.5	FRN5.5G11S-4JE	FRN5.5P11S-4JE	FRN5.5G11S-4EN		DCR4-5.5	13	4.0	9.3
	7.5	FRN7.5G11S-4JE	FRN7.5P11S-4JE	FRN7.5G11S-4EN	FRN5.5G11S-4EN	DCR4-7.5	18	3.5	15
	11	FRN11G11S-4JE	FRN11P11S-4JE	FRN11G11S-4EN	FRN7.5G11S-4EN	DCR4-11	25	2.2	20
	15	FRN15G11S-4JE	FRN15P11S-4JE	FRN15G11S-4EN	FRN11G11S-4EN	DCR4-15	34	1.8	28
	18.5	FRN18.5G11S-4JE	FRN18.5P11S-4JE	FRN18.5G11S-4EN	FRN15G11S-4EN	DCR4-18.5	41	1.4	29
	22	FRN22G11S-4JE	FRN22P11S-4JE	FRN22G11S-4EN	FRN18.5G11S-4EN	DCR4-22A	49	1.2	35
	30	FRN30G11S-4JE	FRN30P11S-4JE	FRN30G11S-4EN	FRN30G11S-4EV	DCR4-30B	71	0.86	35
Three- phase	37	FRN37G11S-4JE	FRN37P11S-4JE	FRN37G11S-4EN	FRN30G11S-4EN	DCR4-37B	88	0.70	40
400V	45	FRN45G11S-4JE	FRN45P11S-4JE	FRN45G11S-4EN	FRN37G11S-4EN	DCR4-45B	107	0.58	44
	55	FRN55G11S-4JE	FRN55P11S-4JE	FRN55G11S-4EN	FRN45G11S-4EN	DCR4-55B	131	0.47	55
	75	FRN75G11S-4JE	FRN75P11S-4JE	FRN75G11S-4EN	FRN55G11S-4EN	DCR4-75B	178	0.335	58
	90	FRN90G11S-4JE	FRN90P11S-4JE	FRN90G11S-4EN	FRN75G11S-4EN	DCR4-90B	214	0.29	64
	110	FRN110G11S-4JE	FRN110P11S-4JE	FRN110G11S-4EN	FRN90G11S-4EN	DCR4-110B	261	0.24	73
	132	FRN132G11S-4JE	FRN132P11S-4JE	FRN132G11S-4EN	FRN110G11S-4EN	DCR4-132B	313	0.215	84
	160	FRN160G11S-4JE	FRN160P11S-4JE	FRN160G11S-4EN	FRN132G11S-4EN	DCR4-160B	380	0.177	90
	200	FRN200G11S-4JE	FRN200P11S-4JE	FRN200G11S-4EN	FRN160G11S-4EN	DCR4-200B	475	0.142	126
	220	FRN220G11S-4JE	FRN220P11S-4JE	FRN220G11S-4EN	FRN200G11S-4EN	DCR4-220B	524	0.126	131
	280	FRN280G11S-4JE	FRN280P11S-4JE	FRN280G11S-4EN	FRN220G11S-4EN	DCR4-280B	649	0.100	150
	315	FRN315G11S-4JE	FRN315P11S-4JE	FRN315G11S-4EN	FRN280G11S-4EN	DCR4-315B	739	0.089	190
	355	FRN355G11S-4JE	FRN355P11S-4JE	_	FRN315G11S-4EN	DCR4-355B	833	0.079	205
	400	FRN400G11S-4JE	FRN400P11S-4JE	FRN400G11S-4EN	_	DCR4-400B	938	0.070	215
	450	_	FRN450P11S-4JE		FRN400G11S-4EN	DCR4-450B	1056	0.063	272
	500	-	FRN500P11S-4JE		_	DCR4-500B	1173	0.057	292

 $\label{eq:NOTE:normalized} \mbox{NOTE: The generated loss is an approximate value calculated by the following conditions:}$

- \bullet Power supply voltage is 200V or 400V, 50Hz. Voltage unbalance is 0(zero) %.
- Power transformer capacity is 500kVA, or 10 times of inverter rated capacity; which is larger one is adopted.
- The load motor is 4 pole standard motor with 100% load.
- No AC reactor (ACR) is connected.
- For the model of 75kW or larger, provided with DC REACTOR (DCR) as standard. (JE version only)

Chapter 3 10. DC REACTOR (DCR)

10.2 FVR-E11S Series

Table 3.21 DC REACTOR (DCR), E11S series

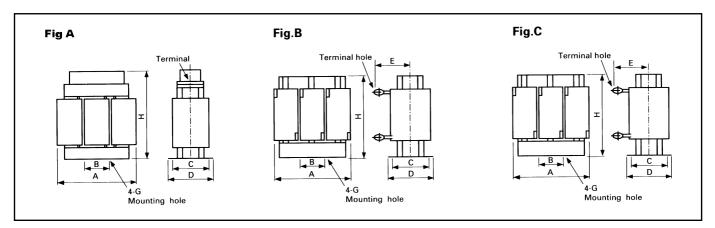
Power	Nominal applied	Inverter type		DC REACT	TOR (DCR)	
supply voltage	motor [kW]	□: JE or EN Type	Туре	Rated current [A]	Inductance [mH]	Generated loss [W]
	0.1	FVR0.1E11S-2JE	DCD2 0.2	1.5	20	0.51
	0.2	FVR0.2E11S-2JE	DCR2-0.2	1.5	20	1.2
	0.4	FVR0.4E11S-2JE	DCR2-0.4	3.0	12	1.7
Three-	0.75	FVR0.75E11S-2JE	DCR2-0.75	5.0	7.0	2.7
phase	1.5	FVR1.5E11S-2JE	DCR2-1.5	8.0	4.0	4.2
200V	2.2	FVR2.2E11S-2JE	DCR2-2.2	11	3.0	6.5
	3.7	FVR3.7E11S-2JE	DCR2-3.7	18	1.7	9.1
	5.5	FVR5.5E11S-2JE	DCR2-5.5	25	1.2	14
	7.5	FVR7.5E11S-2JE	DCR2-7.5	34	0.8	16
	0.4	FVR0.4E11S-4□	DCR4-0.4	1.5	50	1.5
	0.75	FVR0.75E11S-4□	DCR4-0.75	2.5	30	2.1
Three-	1.5	FVR1.5E11S-4□	DCR4-1.5	4.0	16	4.6
phase	2.2	FVR2.2E11S-4□	DCR4-2.2	5.5	12	6.7
400V	3.7, 4.0	FVR3.7E11S-4□ *1)	DCR4-3.7	9.0	7.0	8.5
	5.5	FVR5.5E11S-4□	DCR4-5.5	13	4.0	9.3
	7.5	FVR7.5E11S-4□	DCR4-7.5	18	3.5	15
	0.1	FVR0.1E11S-7□	DCR2-0.2	1.5	20	1.4
	0.2	FVR0.2E11S-7□	DCR2-0.4	3.0	12	1.7
Single- phase	0.4	FVR0.4E11S-7□	DCR2-0.75	5.0	7.0	2.3
200V	0.75	FVR0.75E11S-7□	DCR2-1.5	8.0	4.0	3.6
	1.5	FVR1.5E11S-7□	DCR2-2.2	11	3.0	9.0
	2.2	FVR2.2E11S-7□	DCR2-3.7	18	1.7	9.9

NOTE: *1) JE FVR3.7E11S-4JE EN FVR4.0E11S-4EN

11. AC Reactor (ACR)

■This reactor is unnecessary unless an especially stable power supply such as DC-bus connection operation (PN-connection operation) is required. Use a DC REACTOR (DCR) for reducing harmonics.

Table 3.22 AC reactor (ACR)


				Table 3.22 AC		-,				
Power	Nominal applied	Inver	ter type (□ : JE o r	EN)		,		TOR (ACF	, 	Γ
supply voltage	motor [kW]	G11S series	P11S Series	E11S series	Туре	Rated current [A]		[mΩ/phase] 60Hz		Generated loss [W] *1)
	0.1 0.2 0.4	- FRN0.2G11S-2JE FRN0.4G11S-2JE		FVR0.1E11S-2JE FVR0.2W11S-2JE FVR0.4E11S-2JE	ACR2-0.4A	3	917	1100		2.5 5 10
	0.75	FRN0.75G11S-2JE	_	FVR0.75E11S-2JE	ACR2-0.75A	5	493	592		12
	1.5	FRN1.5G11S-2JE		FVR1.5E11S-2JE		8	295	354		14
	2.2	FRN2.2G11S-2JE		FVR2.2E11S-2JE		11	213	256		16
	3.7	FRN3.7G11S-2JE		FVR3.7E11S-2JE		17	218	153	_	23
_	5.5		FRN5.5P11S-2JE	FVR5.5E11S-2JE		25	87.7	105		27
Three-	7.5			FVR7.5E11S-2JE		33	65.0	78.0		30
phase 200V	11	FRN11G11S-2JE			ACR2-11A	46	45.5	54.7		37
2001	15	FRN15G11S-2JE			ACR2-15A	59	34.8	41.8		43
	18.5	FRN18.5G11S-2JE			ACR2-18.5A	74	28.6	34.3		51
	22				ACR2-22A	87	24.0	28.8		57
	30	FRN30G11S-2JE			ACR2-37	200	10.8	13.0	0.5	28.6
	37	FRN37G11S-2JE		_						40.8
	45 55				ACR2-55	270	7.50	9.00	0.375	47.1 66.1
	75	FRN75G11S-2JE			ACR2-75	390	5.45	6.54	0.250	55.1
	90	FRN90G11S-2JE	FRN90P11S-2JE		ACR2-75 ACR2-90	450	4.73	5.67	0.230	61.5
	110	11111900113-23L	FRN110P11S-2JE		ACR2-110	500	4.75	5.10	0.180	83.4
	0.4	 FRN0.4G11S-4□	FRINTIUF 113-23E	FVR0.4E11S-4□	ACH2-110	300	4.23	5.10	0.160	5
	0.75	FRN0.75G11S-4		FVR0.75E11S-4	ACR4-0.75A	2.5	1920	2300		10
	1.5	FRN1.5G11S-4	_	FVR1.5E11S-4	ACR4-1.5A	3.7	1160	1390		11
	2.2	FRN2.2G11S-4□	_	FVR2.2E11S-4	ACR4-2.2A	5.5	851	1020		14
		FRN3.7G11S-4□*2)		FVR3.7E11S-4 *4)		9	512	615		17
	5.5	FRN5.5G11S-4□	FRN5.5P11S-4JE	FVR5.5E11S-4	ACR4-5.5A	13	349	418	_	22
	7.5		FRN7.5P11S-4JE		ACR4-7.5A	18	256	307		27
	11	FRN11G11S-4□	FRN11P11S-4JE		ACR4-11A	24	183	219		40
	15	FRN15G11S-4□	FRN15P11S-4JE		ACR4-15A	30	139	167		46
	18.5	FRN18.5G11S-4□	FRN18.5P11S-4JE		ACR4-18.5A	39	114	137		57
	22	FRN22G11S-4□	FRN22P11S-4JE		ACR4-22A	45	95.8	115		62
	30 37	FRN30G11S-4 <u>*</u> 3) FRN37G11S-4 <u></u>	FRN30P11S-4JE FRN37P11S-4JE		ACR4-37	100	41.7	50	2.73	38.9 55.7
Three- phase 400V	45 55	FRN45G11S-4 FRN55G11S-4	FRN45P11S-4JE FRN55P11S-4JE		ACR4-55	135	30.8	37	1.61	50.2 70.7
400V	75	FRN75G11S-4	FRN75P11S-4JE		ACR4-75	160	25.8	31	1.16	65.3
	90	FRN90G11S-4□	FRN90P11S-4JE							42.2
		FRN110G11S-4		_	ACR4-110	250	16.7	20	0.523	60.3
	132		FRN132P11S-4JE		ACR4-132	270	20.8	25	0.741	119
	160		FRN160P11S-4JE	1	7.0111102	2.0	20.0		0.7 11	56.4
	200		FRN200P11S-4JE	1	ACR4-220	561	10.0	12	0.236	90.4
	220		FRN220P11S-4JE	1	*5)					107
	280		FRN280P11S-4JE		ACR4-280	825	6.67	8	0.144	108
	315		FRN315P11S-4JE							
	355		FRN355P11S-4JE	1						
	400		FRN400P11S-4JE	1			Contac	t Fuji		
	450		FRN450P11S-4JE					•		
	500		FRN500P11S-4JE							
	500		I I II NOUUE I I I O-4JE							

NOTE: *1) The generated loss is an approximate value calculated by the following conditions:

- *2) JE FRN3.7G11S-4JE EN ... FRN4.0G11S-4EN
- *3) JE FRN30G11S-4JE EN ... FRN30G11S-4EN or FRN30G11S-4EV
- *4) JE FVR3.7E11S-4JE EN ... FVR4.0E11S-4EN
- *5) Fan cooling is required. (3m/s or over).
- \bullet Power supply voltage is 200V or 400V, 50Hz. Voltage unbalance is 0(zero) %.
- Power transformer capacity is 500kVA, or 10 times of inverter rated capacity; which is larger one is adopted.
- The load motor is 4 pole standard motor with 100% load.

11. AC Reactor (ACR)

■ Dimensions of AC reactor (ACR)

NOTE: Selected wire is supposed to be for three-phase.

D	ACR				Dir	mensions [r	nm]				Mass
Power	-	Fig.		T _	_					Terminal	
supply voltage	type		A	В	С	D	E	G	Н	size	[kg]
voltage	ACR2-0.4A				65	90					
	ACR2-0.75A	1	400								1.5
	ACR2-1.5A	1.	120			400			40=	l	
	ACR2-2.2A	A		40	75	100	-	0 1/ 40	125	M4	2.5
	ACR2-3.7A	1		40				6 X 10			
	ACR2-5.5A		105		90	445					3.1
Three-	ACR2-7.5A		125		90	115			95	M5	3.1
phase	ACR2-11A				100	125			95		3.7
200V	ACR2-15A	В					90			M6	4.8
	ACR2-18.5A]	180	60	85	110		7 x 11	115	IVIO	5.5
	ACR2-22A										5.5
	ACR2-37		190	60	90	120	170	7 x 11	190	8.4	11
	ACR2-55		190	60	90	120	200	7 x 10	190		12
	ACR2-75	С	250	100	90	120	200	9 x 14	250	13	25
	ACR2-90		285	190	120	158	190	12 x 20	210] 13	26
	ACR2-110		280	150	110	138	200	10 x 20	270		30
	ACR4-0.75A		120		65	90					1.1
	ACR4-1.5A									M4	1.9
	ACR4-2.2A			40	75	100		6 x 10	95	1414	2.2
	ACR4-3.7A		125	40				0 x 10	90		2.4
	ACR4-5.5A				90	115	90			M5	3.1
	ACR4-7.5A	В			30	110	30			IVIO	3.7
	ACR4-11A								115]	4.3
Three-	ACR4-15A		180		85	110		7 x 11		M6	5.4
phase	ACR4-18.5A		100		05	110		/ * 11	137	I WIO	5.7
400V	ACR4-22A			60							5.9
	ACR4-37					120	170			8.4	11
	ACR4-55		190		90		200	7 x 10	190	10.5	12
	ACR4-75					126	197			11	
	ACR4-110	_ с [250	100	105	136	202	9.5 x 18	245]	24
	ACR4-132				115	146	210	0.0 X 10	250	13	32
	ACR4-220	_	320	120	110	150	240	12 x 20	300	'	40
	ACR4-280		380	130			260	.2 x 20	000		52

12. Ferrite Ring for Reducing Radio Noise (ACL)

13. Power Regenerative PWM Converter (RHC)

12. Ferrite Ring for Reducing Radio Noise (ACL)

■The applicable wire size depends on the inner diameter and installation condition of the ferrite ring for reducing radio noise (ACL).

Table 3.18 Ferrite ring for reducing radio noise (ACL)

Ferrite ring type	Q'ty	No. of turns	Recommended wire size [mm²]
ACL-40B	1	4	2.0, 3.5, 5.5
	2	2	8, 14
ACL-74B	1	4	8, 14
	2	2	22, 38, 60, 5.5 x 2, 8 x 2, 14 x 2, 22 x 2
	4	1	100, 150, 200, 250, 325, 38 x 2, 60 x 2, 100 x 2, 150 x 2

NOTE: Selecterd wire is supposed to be for three-phase.

13. Power Regenerative PWM Converter (RHC)

Combining the FRENIC5000G11S/P11S series inverter with the RHC series power regenerative PWM converter enables power regenerative braking to be easily performed. In this section, specifications, wiring diagram, standard capacity application list, dimensions, and optional parts are described.

The power regenerative PWM converter regenerates a large energy genarated at the time of braking due to lifted and lowered load or large inertia centrifugal separator back to the AC power supply efficiently.

Features

- Raising the braking performance
- Energy-saving
- Space-saving
- · Increasing the capacity by parallel wiring

■ Standard specifications

• 200V series

	Туре	RHC7.5-2A	RHC15-2A	RHC22-2A	RHC37-2A	RHC55-2A					
Applicable inve	erter capacity	5.5, 7.5	11, 15	18.5, 22	30, 37	45, 55					
Output	Rated capacity [kW]	8.5	17	25.2	41	62					
ratings	Rated voltage [V]	340									
	Rated current [A]	25	50	74	120	182					
Input	Overload capability	150% for 1min.									
ratings	Phases, Voltage, Frequency	Three-phase 200-22	ree-phase 200-220V 50/60Hz								
	Voltage /frequency variations	Voltage: +10 to -15%	(Voltage unbalance:	3% or less) Frequence	cy: +5 to -5%						
	Required power supply capacity [kVA]	10	20	29	47	69					
Regenerative	Cont. rating	100% of rated currer	t, Continuous								
braking	Short-time rating	150% of rated currer	it for 1min.								
Enclosure	<u>. </u>	IP40			IP00						
Cooling metho	d	Forced fan cooling									
Mass [kg]		12.0			28.0	44.0					

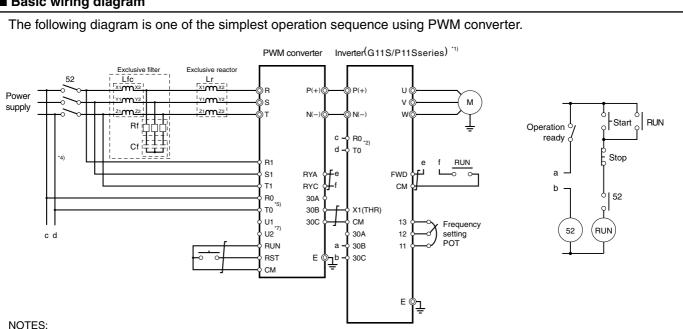
400V series

	Туре	RHC7.5-4A	RHC15-4A	RHC22-4A	RHC37-4A	RHC55-4A	RHC75-4A	RHC110-4A	RHC160-4A	RHC220-4A
Applicable inve	rter capacity	5.5, 7.5	11, 15	18.5, 22	30, 37	45, 55	75	90, 110	132, 160	200, 220
Output	Rated capacity [kW]	8.8	17	25.2	41	62	83	124	181	249
ratings	Rated voltage [V]	680								
-	Rated current [A]	13	25	37	60	91	122	182	266	366
Input	Overload capability	150% for 1	min.							
ratings	Phases, Voltage, Frequency	Three-phas	se 400-440'	V 50/60Hz	*1)					
	Voltage /frequency variations	Voltage: +1	0 to -15% (Voltage unb	alance: 3% (or less) Fre	quency: +5	to -5%		
	Required power supply capacity [kVA]	10	20	29	47	69	97	144	211	291
Regenerative	Cont. rating	100% of ra	ted current,	Continuous						
braking	Short-time rating	150% of ra	ted current t	or 1min.						_
Enclosure	<u>-</u>	IP40			IP00					
Cooling method Forced fan cooling										
Mass [kg]		12.0			28.0	33.0	60.0	85.0	120.0	175.0

^{*1)} If 380V is applied, the rated capacity reduces

13. Power Regenerative PWM Converter (RHC)

■ Common specifications


Control	Control method	Sinusoidal wave input current control
	Operation method	Operation starts at power-on after wiring completed Input signal: Run command, Stop command, Reset input
	Operation status signal	Ready to operate
	Input power-factor	0.95 or higher (at 100% load)
	Input harmonic current	Conversion coefficient Ki=0 (based on "Guideline for Harmonic Current Suppression" by MITI "Ministry of International Trade and Industry")
	Restart after momentary power failure	Automatically restarts the converter at power recovery
	Current limiting control	Controls current under the preset current limiting level.
Indication	Running, stopping	Input current, Input voltage, Input power, Output voltage (by 7-segment LED display)
	Program mode	Displays function codes and data
	Trip mode	Displays cause of the trip by code (by 7-segment LED display). LD1 (LED) is on when CPU error occurs.
Protection	Overcurrent	Detects AC overcurrent to stop the operation of the unit. (OC)
	Overvoltage	Detects DC overvoltage to stop the operation of the unit. (OV)
	Overload	Stops operation of the unit by electronic thermal function and detection of temperature inside (OL)
	Overheating	Stops operation of the unit by detecting heat sink overheating. (OH)
	AC fuse blown	Stops operation of the unit by detecting AC fuse blown. (AFUS) *1)
	DC fuse blown	Stops operation of the unit by detecting DC fuse blown. (DFUS) *1)
	Abnormal frequency	Stops operation of the unit by detecting frequency of AC input power at power-on. (FRE)
	DC link circuit undervoltage	Stops operation of the unit when the DC voltage drops below the undervoltage level (165V or less in 200V seires, 365V or less in 400V seires). (Auto-reset is selectable by function setting.) (LU)
	AC circuit undervoltage	Stops operation of the unit when the AC voltage drops below the undervoltage level (165V or less in 200V seires, 365V or less in 400V seires). (Auto-reset only, No alarm indication)
Condition (Installation	Installation location	Indoor use only. Altitude: 1000m or less. Free from corrosive gases, flammable gases, dusts, and direct sunlight.
and	Ambient temperature	-20 to +50°C
operation)	Ambient humidity	20 to 90%RH (non-condensing)
	Vibration	5.9m/s2 or less
Storage cond	dition	-20 to +65°C

^{*1)} Not provided with RHC22-□ or smaller model.

■ Terminal function

	Symbol	Terminal name	Function	
Main circuit	R,S,T	Power input	Connect a 3-phase power supply via an exclusive reactor.	
	P(+),N(-)	Converter output	Connect the power input terminals P(+), N(-) of inverter.	
	E(G)	Grounding	Grounding terminal for converter chassis (housing).	
	R0,T0	Auxiliary control power supply	Connect the same AC power supply as that of the main circuit to back up the control circuit power supply.	37kW or larger model only
	U1,U2	Auxiliary power supply	Connect the power supply transformer used for cooling fans and magnetic contactor for charging resistor by – pass. Change of wiring inside the converter is necessary when the main circuit voltage is 380V.	37kW or larger model in 400V series only
Voltage detection	R1,S1,T1	Synchronous power input	Used for detecting for converter control. Connect to the power supply side of exclusive reactor and exclusive filter	
Control input	RUN	Operation command	RUN-CM: ON - The converter runs; OFF - The converter stops.	
	RST	Alarm reset	When RST-CM is on after the cause of trip is removed during alarm stop, the a function (converter is in trip state) is reset and the converter restarts operation.	
	X1	Function extension	Not in use at normal use	
	СМ	Common for input signal	Common terminal for contact input signal.	
Analog I/O	Al	Function extension	Not in use at normal use	
	AO	Function extension	Not in use at normal use	
	M	Analog I/O common	Common terminal for analog I/O signal.	
Transistor output	Y1	Overload early warning	Outputs overload early warning ON signal before overload protective function is activated. (Warning level can be preset by Function F07.)	Allowable output of transistor: 27V
•	Y2	Overcurrent early warning	Outputs ON signal when load level (F08 x F10, or F09 x F10) is 100 or over. (For F08, F09, F10, see next page)	DC, 50mA max.
	CME	Common (transistor output)	Common for transistor output signal.	•
Relay output	RYA,RYC	Ready output	Outputs ON signal when the converter is ready for operation. (Initial charge and voltage step-up completed)	
	30A,30B,30C	Alarm relay output	Outputs a contact signal when a protective function is activated and converter stops by an alarm. (1SPDT contact, 30A-30C: ON - At trip mode)	Contact rating: 250V AC, 0.3A (cos ø=0.3)

■ Basic wiring diagram

- Design the sequence so that inverter operation comannd can be input after PWM converter is ready to operate.
- *1) For the applicable inverter models, refer to the combination table on page 3-26.
- *2) The power supply for cooling fans and magnetic contactors inside inverter may be required. (When a converter has to be connected to an inverter of 30kW or larger, change-over the connector CNRXTX in the inverter.
- *3) When the actual power supply capacity is insufficient compared to the required capacity, the PWM converter may be damaged.
- *4) An insulation transformer may be necessary for some models. For detalis, see the instruction manual.
- *5) Provided with 37kW model or larger.
- *6) Be sure to connect the exclusive filter to the primary side (power supply side) of the exclusive reactor.
- *7) When the main circuit voltage is 380V, connection inside the converter has to be changed.

13. Power Regenerative PWM Converter (RHC)

■ Function setting

		Function	Catting young	B.01	Footow, cotting
	Code	Name	Setting range	Min. unit	Factory setting
Operation	F00	DC link circuit voltage	Detection level	1V	-
monitor	F01	Input voltage		1V	-
	F02	Input current		1A	-
	F03	Input power		1kW	-
Basic functions	F04	LED monitor selection	0: F00 DC link circuit voltage 1: F01 Input voltage 2: F02 Input current 3: F03 Input power	-	0
	F05	LV cancel	0: Active 1: Inactive	-	0
	F06	Filter capacitor	0: Connect 1: Disconnect	-	1
	F07	Overload early warning level	50 to 105%	1%	80%
	F08	Input current limiter (Driving)	0 to 150%	1%	150%
	F09	Input current limiter (Braking)	-150 to 0%	1%	-150%
	F10	Current limiter output (Ratio)	50 to 100%	1%	100%
Alarm monitor	E00	Alarm data (Latest)	Alarm code	-	-
	E01	Alarm data (the last)		-	-
	E02	Alarm data (the last but one)		-	-
	E03	Alarm data (the last but two)	_	-	-
	E04	Alarm history clear	0: Inactive 1: Active	-	0

■ Protective functions

Function	Description	LED monitor
Overcurrent	Stops the converter operation immediately when the converter input current reaches overcurrent protection level.	ОС
DC undervoltage	 Stops the converter operation immediately when the main circuit DC voltage drops below undervoltage level, and retains the trip state. The trip state is automatically reset when the power failure time becomes long and the control circuit cannot be held. 	LU
AC undervoltage	- Stops the converter operation immediately when the power supply voltage drops below undervoltage level.	
	- The trip state is automatically reset when the power failure time becomes long and the control circuit power cannot be held.	
Overvoltage	Stops the converter operation immediately when the main circuit DC voltage reaches overvoltage protection level.	OU
Overload	Stops the converter operation immediately when the load connected to the coverter becomes excessive.	OL
Converter overheating	Stops the converter operation immediately when it detects excess heat sink temperature or an abnormal rise in temperature inside the converter.	ОН
Power supply abnormal frequency	Stops the converter operation immediately when the power supply exceeds the frequency range of 50 ± 4 Hz or 60 ± 4 Hz. (Detected only when power-on)	FrE
NVRAM fault	Stops the converter operation immediately when nonvolatile memory on the control PC board in the converter is faulty.	Err1
CPU error	Stops the converter operation immediately when it detects CPU error on the PC board in the converter.	LD1 on

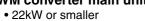
NOTE:

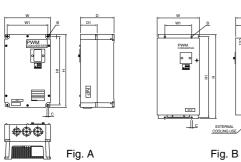
When the control power voltage is reduced until the operation of converter control circuit cannot be maintained, all the protective functions are automatically reset.

Table 3.23 Combination of inverter and converter

Power		er type	PWM	Exclusive			sive filter
supply voltage	G11S series (□ : JE or EN)	P11S series	converter main unit type	reactor type	Filter (Reactor type)	Filter (Capacitor type)	Filter (Resistor type)
	FRN5.5G11S-2JE	FRN5.5P11S-2JE	RHC7.5-2A	LR2-7.5	LFC2-7.5	CF2-7.5	RF2-7.5
	FRN7.5G11S-2JE	FRN7.5P11S-2JE					
	FRN11G11S-2JE	FRN11P11S-2JE	RHC15-2A	LR2-15	LFC2-15	CF2-15	RF2-15
	FRN15G11S-2JE	FRN15P11S-2JE					
	FRN18.5G11S-2JE	FRN18.5P11S-2JE	RHC22-2A	LR2-22	LFC2-22	CF2-22	RF2-22
Three-	FRN22G11S-2JE	FRN22P11S-2JE					
phase	FRN30G11S-2JE	FRN30P11S-2JE	RHC37-2A	LR2-37L	LFC2-37	CF2-37	GRZG400-1Ω
200V	FRN37G11S-2JE	FRN37P11S-2JE					
	FRN45G11S-2JE	FRN45P11S-2JE	RHC55-2A	LR2-55L	LFC2-55	CF2-55	GRZG400-0.6Ω
	FRN55G11S-2JE	FRN55P11S-2JE					
	FRN75G11S-2JE	FRN75P11S-2JE					•
	FRN90G11S-2JE	FRN90P11S-2JE			Contact Fuji		
	_	FRN110P11S-2JE					
	FRN5.5G11S-4□	FRN5.5P11S-4JE	RHC7.5-4A	LR4-7.5	LFC4-7.5	CF4-7.5	RF4-7.5
	FRN7.5G11S-4□	FRN7.5P11S-4JE					
	FRN11G11S-4□	FRN11P11S-4JE	RHC15-4A	LR4-15	LFC4-15	CF4-15	RF4-15
	FRN15G11S-4□	FRN15P11S-4JE					
	FRN18.5G11S-4□	FRN18.5P11S-4JE	RHC22-4A	LR4-22	LFC4-22	CF4-22	RF4-22
	FRN22G11S-4□	FRN22P11S-4JE					
	FRN30G11S-4□ *1)	FRN30P11S-4JE	RHC37-4A	LR4-37L	LFC4-37	CF4-37	GRZG400-4Ω
	FRN37G11S-4□	FRN37P11S-4JE					
	FRN45G11S-4□	FRN45P11S-4JE	RHC55-4A	LR4-55L	LFC4-55	CF4-55	GRZG400-2.4Ω
	FRN55G11S-4□	FRN55P11S-4JE					
Three-	FRN75G11S-4□	FRN75P11S-4JE	RHC75-4A	LR4-75L	LFC4-75	CF4-75	RF4-75
phase	FRN90G11S-4□	FRN90P11S-4JE	RHC7.5-4A	LR4-110L	LFC4-110	CF4-110	RF4-110
400V	FRN110G11S-4□	FRN110P11S-4JE					
	FRN132G11S-4□	FRN132P11S-4JE	RHC160-4A	LR4-160L	LFC4-160	CF4-160	RF4-160
	FRN160G11S-4□	FRN160P11S-4JE					
	FRN200G11S-4□	FRN200P11S-4JE	RHC220-4A	LR4-220L	LFC4-220	CF4-220	RF4-220
	FRN220G11S-4□	FRN220P11S-4JE					
	FRN280G11S-4□	FRN280P11S-4JE					
	FRN315G11S-4□	FRN315P11S-4JE					
	FRN355G11S-4JE	FRN355P11S-4JE			Contact F: "		
	FRN400G11S-4□	FRN400P11S-4JE			Contact Fuji		
		FRN450P11S-4JE					
	_	FRN500P11S-4JE					

NOTES: • When using an exclusive filter, use a reactor type filter, a capactor type one, and resistor type one at the same time.

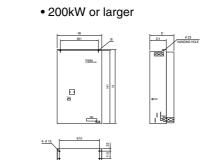

More than one inverters can be connected to one converter if the converter capacity is not exceeded.
 *1) JE....FRN30G11S-4JE, EN....FRN30G11S-4EN or ERN30G11S-EV

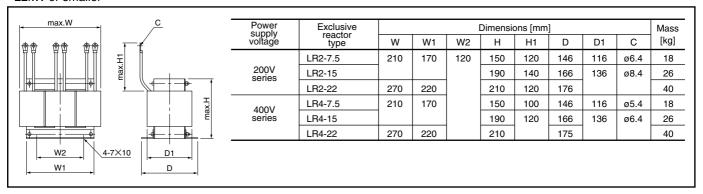

13. Power Regenerative PWM Converter (RHC)

• 30 to 160kW

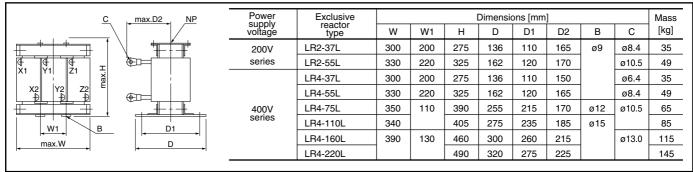
■ Dimensions

• PWM converter main unit



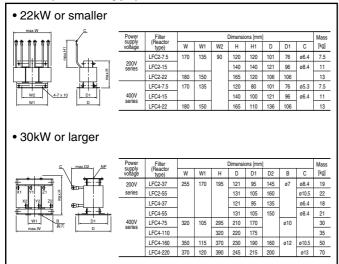

Fig. C

Power supply	PWM converter	F: N				Dimensi	ons [mm]				Mass
voltage	main unit type	Fig.No	W	W1	Н	H1	D	D1	В	С	[kg]
	RHC7.5-2A	Α	255	226	401	378	189	93.5	ø10	10	12
Three-	RHC15-2A										
phase	RHC22-2A										
200V	RHC37-2A	В	280	180	615	595	275	170			28
	RHC55-2A		340	240	750	730	280	165			44
	RHC7.5-4A	Α	255	226	401	378	189	93.5	ø10	10	12
	RHC15-4A										
	RHC22-4A										
Three-	RHC37-4A	В	280	180	550	530	265	160			26
phase 400V	RHC55-4A				675	655	275	170			33
	RHC75-4A		530	430	840	810	270	150	ø15	15	60
	RHC110-4A						315	190			85
	RHC160-4A				1100	1070	360	220			120
	RHC220-4A	С	680	580		1080		245		_	175

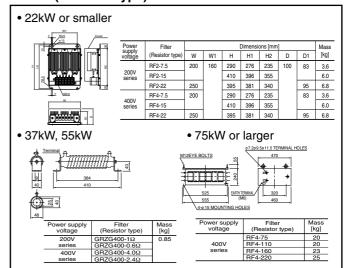

13. Power Regenerative PWM Converter (RHC)

• RHC series exclusive reactor

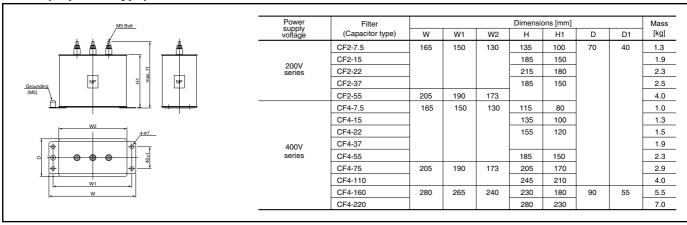
22kW or smaller



• 30kW or larger



RHC series exclusive filter


Filter (Reactor type)

• Filter (Resistor type)

• Filter (Capacitor type)

Optimal Type Selection

Contents

1. Inverter and Motor Selection	4-2
1.1 Motor output torque characteristics	4-2
1.2 Selection procedure	
1.3 Selection calculation expressions	
1.3.1 Load Torque during constant speed running	
1.3.2 Acceleration and deceleration time calculation	
1.3.3 Heat Energy calculation of braking resistor	
1.3.4 Appendix (calculation for other than in SI Unit)	
2. Braking Unit and Braking Resistor Selection	4-11
2.1 Selection procedure	4-11
2.2 Notes on selection	

1. Inverter and Motor Selection

1. Inverter and Motor Selection

When selecting a general-purpose inverter, select a motor first and next inverter.

- (1) To select a motor, determine what kind of load machine is used, calculate the moment of inertia, and then select an appropriate motor capacity.
- (2) To select an inverter, consider in what operating conditions (acceleration time, deceleration time, or frequency in operation) the mechanical system is used for the motor capacity selected in (1), and calculate acceleration torque, deceleration torque, and braking torque.

Here, the selection procedure for the above (1) and (2) is described. First, explained is the output torque obtained by using the inverter FRENIC5000G11S/P11S or FVR-E11S.

Motor output torque characteristics (See Section 1.1)

Torque characteristics (continuous output torque, output torque in a short time, braking torque) obtained when frequency control is made by inverter, are described for the whole range of speed control using figures.

◆ Selection procedure (See Section 1.2 and 1.3)

- 1 Selection procedure: Explained using a flowchart.
- 2 Selection calculation expressions: Calculation method shown in the selection flowchart is explained with calculation expressions.

1.1 Motor output torque characteristics

Fig. 4.1 and 4.2 show the output torque characteristics individually according to 50Hz and 60Hz base for the rated output frequency.

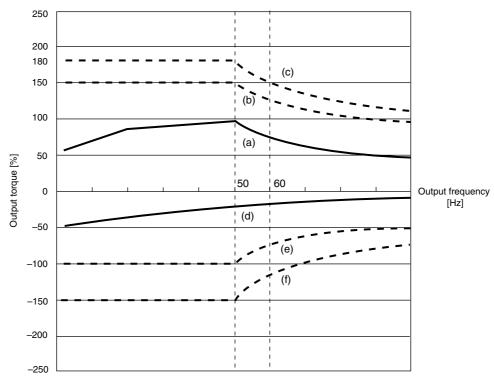


Fig. 4.1 Output torque characteristics (50Hz base)

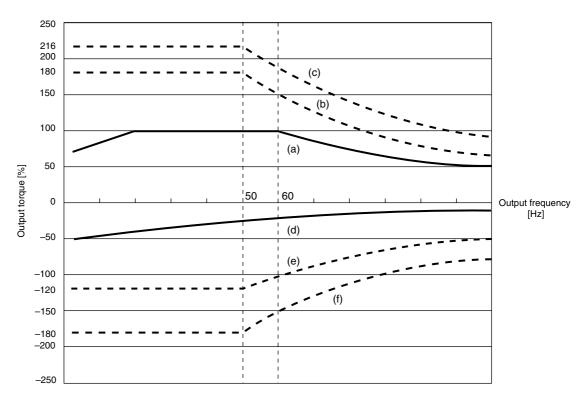


Fig. 4.2 Output torque characteristics (60Hz base)

(1) Continuous allowable driving torque (Fig. 4.1 and 4.2, curve (a))

Curve (a) is the torque that can be obtained in a range of the inverter continuous rated current. This value can be obtained continuously by observing the motor cooling characteristic. In 60Hz running, 100% output torque is obtained, but in 50Hz running, output torque is a somewhat reduced compared with that during commercial running, and it is further reduced during low speed running. Reduction of output in 50Hz running is due to increased loss by inverter driving, and that in low speed running is mainly due to air flow reduction of motor cooling fan.

(2) Maximum driving torque in a short time (Fig. 4.1 and 4.2, curves (b) and (C))

Curve (b) is the torque that can be obtained in a range of the inverter rated current in short time (150% for one minute) when torque vector control is selected. At that time, the motor cooling characteristics have little effect to the output torque.

Curve (c) is an example of output torque when one size larger capacity inverter is used to increase the short time maximum torque. At that time, short time torque is 20 to 30% greater than that when standard capacity inverter is applied.

(3) Starting torque (around speed 0 in Fig. 4.1 and 4.2)

Maximum torque in a short time is starting torque as it is.

(4) Braking torque

(Fig. 4.1 and 4.2, curves (d), (e), and (f))

n braking mode, mechanical energy is converted to electrical energy and regenerated to the smoothing capacitor in the inverter. A large braking torque, as shown in curve (e), can be obtained by discharging this electrical energy to the braking resistor. If a braking resistor is not provided, only the motor and inverter losses consume the regenerated braking energy, so the torque becomes smaller, as shown in curve (d). A 7.5kW or smaller capacity inverter unit incorporates a small braking resistor, so a large braking torque can be obtained even if optional resistor is not used. For further information, see Chapter 1, Specifications.

Braking torque when a braking resistor is used is allowable only for a short time. Its time ratings are mainly determined by the braking resistor ratings. In this manual and associated catalogues, the allowable value [kW] obtained from average discharging loss and allowable value [kWs] obtained from discharging capability that can be discharged at one time are shown.

The torque % value varies according to the inverter capacity.

For a 11kW or larger capacity inverter unit, a discharging transistor unit (braking unit) is necessary, in addition to the braking resistor. So, selecting an optimum braking unit enables a braking torque value to be selected comparatively freely in a range below short time maximum torque in driving mode, as shown in curve (f).

For torque values and other allowable values of standard selection of braking unit and resistor, see Chapter 3, Section 4.

1. Inverter and Motor Selection

1.2 Selection procedure

Fig. 4.3 shows the general selection procedure for optimal inverter selection. Inverter capacity can be easily selected if there are no limitation regarding acceleration and deceleration

time. The cases such as "Lifting or lowering a load", "Acceleration and deceleration time is restricted", or "Highly frequent acceleration and deceleration" make the selection procedure a little bit complex.

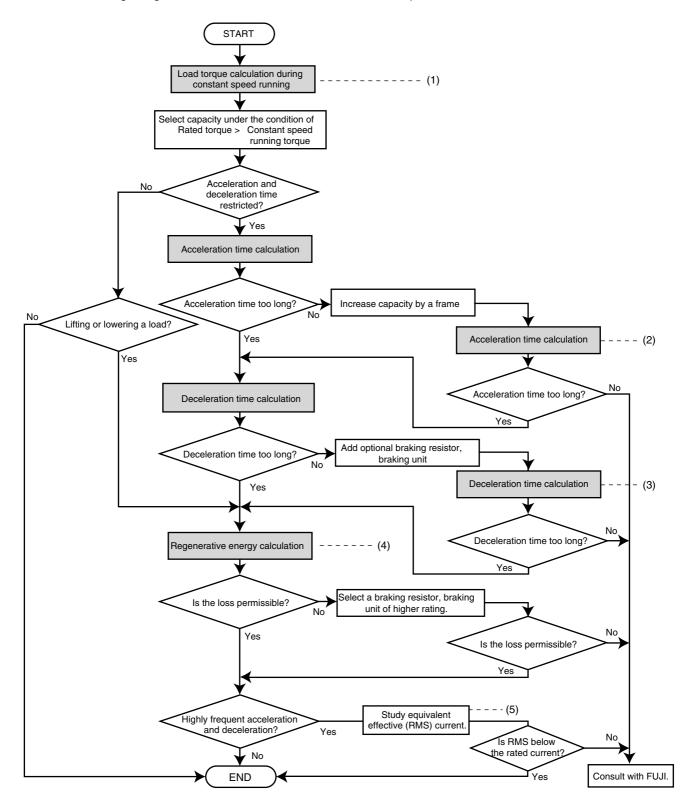


Fig. 4.3 Selection procedure

(1) Calculation of load torque during constant speed running (For detailed calculation, see Section 1.3.1)

This step is necessary for capacity selection for all loads. Determine the rated torque of the motor during constant speed running higher than that of the load torque, and select a tentative capacity. To perform capacity selection efficiently, it is necessary to match the rated speeds (base speeds) of the motor and load.

To do this, select an appropriate reduction-gear (mechanical transmission) ratio and number of motor poles. If acceleration/deceleration time is not limited and the system is not a lifting machine, capacity selection is completed as it is.

(2) Acceleration time

(For detailed calculation, see Section 1.3.2)

When there are specified requirements for the acceleration time, calculate it using the following procedure:

① Calculate moment of inertia for the load and motor. Calculate moment of inertia for the load by referring to Section1.3.2.

② Calculate minimum acceleration torque. (See Fig. 4.4) The acceleration torque is the difference between motor short time output torque (60s rating) explained in Section 1.1 and load torque (τ_L/η_G) during constant speed running calculated in the above ① . Calculate minimum acceleration torque for the whole range of speed.

3 Calculate the acceleration time.

Assign the value calculated above to the expression (4.15) in Section 1.3.2 to calculate the acceleration time. If the calculated acceleration time is longer than the requested time, select one size larger capacity inverter and motor and calculate it again.

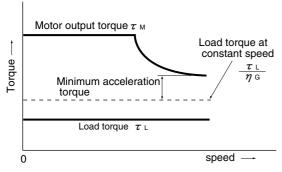


Fig. 4.4 Example study of minimum acceleration torque

(3) Deceleration time

(For detailed calculation, see Section 1.3.2)

To calculate the deceleration time, check the motor deceleration torque characteristics for the whole range of speed in the same way as for the acceleration time.

① Calculate moment of inertia for the load and motor. Same as for acceleration time.

② Calculate minimum deceleration torque. (See Fig. 4.5)

Same as for deceleration time.

3 Calculate the deceleration time.

Assign the value calculated above to the expression (4.16) in Section 1.3.2 to calculate the deceleration time. If the calculated deceleration time is longer than the requested time, select one size larger capacity and calculate it again.

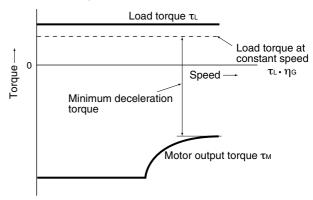


Fig. 4.5 Example study of minimum deceleration torque (1)

However, note that minimum deceleration torque becomes smaller due to regenerative operation when lifting or lowering a load. (See Fig. 4.6)

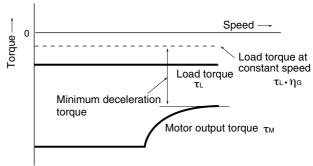


Fig. 4.6 Example study of minimum deceleration torque (2)

(4) Braking resistor rating

(For detailed calculation, see Section 1.3.3)

Braking resistor rating is divided into two types according to the braking periodic duty cycle:

① When periodic duty cycle is 100s or less:

Calculate average loss to determine rated values.

② When periodic duty cycle is 100s or more:

Allowable braking energy depends on maximum braking power. Allowable values are listed in Chapter 3, Section 4.

(5) Motor RMS current

In metal processing machine and carriage machinery requiring positioning control, highly frequent running with short time rating is performed. In this case, calculate an equivalent RMS current value not to exceed the allowable value for the motor.

1. Inverter and Motor Selection

1.3 Selection calculation expressions1.3.1 Load torque during constant speed running

1. General expression

The frictional force acting on a horizontally moved load must be calculated. For loads lifted or lowered vertically or along a slope, the gravity acting on the load must be calculated. Calculation for driving a load along a straight line with the motor is shown below.

Where the force to move a load linearly at constant speed υ [m/s] is F[N] and the motor speed for driving this is N_M [r/min], the required motor output torque τ_M [N·m] is as follows:

$$\tau_{\text{M}} = \frac{60\upsilon}{2\pi \cdot \text{N}_{\text{M}}} \cdot \frac{\text{F}}{\eta_{\text{G}}} \quad [\text{N} \cdot \text{m}] \qquad (4.1)$$

Where, η_{e} : Reduction-gear efficiency

When the motor is in braking mode, efficiency works inversely, so the required motor torque should be calculated as follows:

$$\tau_{\text{M}} = \frac{-60\upsilon}{2\pi\cdot N_{\text{M}}} \cdot F \cdot \eta_{\text{G}} \quad [\text{N} \cdot \text{m}] \qquad (4.2)$$

 $(60\upsilon)/(2\pi\cdot N_M)$ in the above expression is an equivalent rotation radius corresponding to speed υ around the motor shaft.

The value F in the above expressions changes according to the load type.

2. Obtaining the required force F

(1) Moving a load horizontally Load W [kg] Carrier table Wo [kg] Motor N_M [r/min] Ball screw

Fig. 4.7 Moving a load horizontally

As shown in Fig. 4.7, where the carrier table weight is W_0 [kg], load is W [kg], and friction coefficient of the ball screw is μ , friction force F [N] is expressed as follows:

$$F = (W_0 + W) \cdot g \cdot \mu \qquad [N] \dots (4.3)$$

Where, g : Gravity acceleration (≒ 9.8 m/s²) Then, required driving torque around the motor shaft is expressed as follows:

$$\tau_{\text{M}} = \frac{60\upsilon}{2\pi \cdot N_{\text{M}}} \cdot \frac{(W_0 + W) \cdot g \cdot \mu}{\eta_{\text{G}}} \quad [\text{N} \cdot \text{m}] \quad \tag{4.4}$$

(2) Moving a load vertically

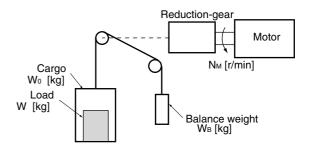


Fig. 4.8 Moving a load vertically

As shown in Fig. 4.8, where a cage weight, load weight, and balance-mass weight are W_0 , W, and W_B [kg], the force of gravity F [N] is as follows:

(Lifting)
$$F = (W_0 + W - W_B) \cdot g \qquad [N] \dots (4.5)$$
 (Lowering)
$$F = (W_B + W - W_0) \cdot g \qquad [N] \dots (4.6)$$

Where maximum load is W_{max} , generally W_B equals to $(W_o + W_{max})$ / 2. So, F may become a negative force to brake both lifting and lowering movements depending on the load weight.

Calculate the required torque τ around the motor shaft in the driving mode by expression (4.1) and that in the braking mode by expression (4.2). That is, if F is positive, use expression (4.1); if it is negative, use expression (4.2).

(3) Moving a load along a slope

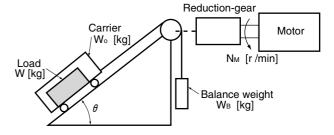


Fig. 4.9 Moving a load along a slope

Lifting and lowering a load along a slope may seem to be like lifting and lowering a load vertically, but friction force between the load and the slope cannot be ignored in lifting and lowering along a slope. Therefore, the expression for lifting a load is a little different from that for lowering a load. Where slope angle is θ and friction coefficient is $\mu,$ as shown in Fig. 4.9, driving force F [N] is as follows:

The force of gravity F may become a negative force to brake both lifting and lowering movements, depending on the load weight. This is the same as for vertical lifting and lowering. Required torque around the motor shaft can be also calculated similarly. That is, when F is positive, use expression (4.1); when it is negative, use expression (4.2).

1.3.2 Acceleration and deceleration time calculation

When an object whose moment of inertia is $J [kg \cdot m^2]$ rotates at the speed N [r/min], it has the following kinetic energy:

$$E = \frac{J}{2} \left(\frac{2\pi \cdot N}{60}\right)^2 \quad [J] \qquad (4.9)$$

To accelerate the above rotation, kinetic energy will be increased; to decelerate, kinetic energy must be discharged.

The torque required for acceleration and deceleration can be expressed as follows:

$$\tau = J \cdot \frac{2\pi}{60} \; \left(\frac{dN}{dt}\right) \quad \text{[N·m]} \qquad (4.10)$$
 In this way, the mechanical moment of inertia is an

important element in acceleration and deceleration. First, calculation method of moment of inertia is described, then that for acceleration and deceleration time are explained.

1. Calculation of moment of inertia

For an object that rotates around the rotation axis, vertually divide the object into small segments and square the distance from the rotation axis to each segment. Then, sum the squares of the distances and the masses of the segments to calculate the moment of inertia.

Moment of inertia
$$J = \sum (Wi \cdot ri^2) [kg \cdot m^2] \dots (4.11)$$

1 Hollow cylinder and solid cylinder

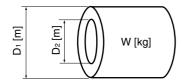


Fig. 4.10 Hollow cylinder

The common shape of a rotating body is hollow cylinder. The moment of inertia around the hollow cylinder center axis can be calculated as follows, where the outer and inner diameters are D_1 and D_2 [m] and total weight is W [kg] in Fig. 4.10.

$$J = \frac{W \cdot (D_1^2 + D_2^2)}{8} \qquad [kg \cdot m^2] \qquad (4.12)$$

For a similar shape, a solid cylinder, calculate the moment of inertia as D_2 is 0.

1. Inverter and Motor Selection

② For a general rotating body

Table 4.1 lists the calculation expressions of moment of inertia of various rotating bodies including the above cylindrical rotating body.

Table 4.1 Moment of inertia of various rotating bodies

	Table 4.1 Moment of inertia	a of various rotating bodies	
Shape	Mass:W [kg] Moment of inertia:J [kg·m²]	Shape	Mass :W [kg] Moment of inertia :J [kg·m²]
Hollow cylinder	$W = \frac{\pi}{4} (D_1^2 - D_2^2) \cdot L \cdot \rho$ $J = \frac{1}{8} \cdot W \cdot (D_1^2 + D_2^2)$	c –axis b–axis a–axis	$W = A \cdot B \cdot L \cdot \rho$ $J_a = \frac{1}{12} \cdot W \cdot (L^2 + A^2)$
Sphere	$W = \frac{\pi}{6} D^3 \cdot \rho$ $J = \frac{1}{10} \cdot W \cdot D^2$	Lo A L	$J_{0} = \frac{1}{12} \cdot W \cdot (L^{2} + \frac{1}{4} \cdot A^{2})$ $J_{0} \stackrel{\leftarrow}{=} W \cdot (L_{0}^{2} + L_{0} \cdot L + \frac{1}{3} \cdot L^{2})$
Cone	$W = \frac{\pi}{12} D^2 \cdot L \cdot \rho$ $J = \frac{3}{40} \cdot W \cdot D^2$	c-axis b-axis a-axis	$W = \frac{\pi}{4} D^2 \cdot L \cdot \rho$ $J_a = \frac{1}{12} \cdot W \cdot (L^2 + \frac{3}{4} \cdot D^2)$
Rectangular prism A L	$W = A \cdot B \cdot L \cdot \rho$ $J = \frac{1}{12} \cdot W \cdot (A^2 + B^2)$	Lo L	$J_{b} = \frac{1}{3} \cdot W \cdot (L^{2} + \frac{3}{16} \cdot D^{2})$ $J_{c} \rightleftharpoons W \cdot (L_{0}^{2} + L_{0} \cdot L + \frac{1}{3} \cdot L^{2})$
Pyramid, rectangular base	$W = \frac{1}{3} A \cdot B \cdot L \cdot \rho$ $J = \frac{1}{20} \cdot W \cdot (A^2 + B^2)$	c-axis b-axis	$W = \frac{1}{3} A \cdot B \cdot L \cdot \rho$ $J_b = \frac{1}{10} \cdot W \cdot (L^2 + \frac{1}{4} \cdot A^2)$
Triangular prism	$W = \frac{\sqrt{3}}{4} \cdot A^2 \cdot L \cdot \rho$ $J = \frac{1}{3} \cdot W \cdot A^2$	c-axis b-axis	$J_{c} \stackrel{.}{=} W \cdot (L_{0}^{2} + \frac{3}{2}L_{0} \cdot L + \frac{3}{5} \cdot L^{2})$ $W = \frac{\pi}{12} \cdot D^{2} \cdot L \cdot \rho$
Tetrahedron with an equilateral triangular base	$W = \frac{\sqrt{3}}{12} \cdot A^2 \cdot L \cdot \rho$ $J = \frac{1}{5} \cdot W \cdot A^2$		$J_{D} = \frac{1}{10} \cdot W \cdot (L^{2} + \frac{3}{8} \cdot D^{2})$ $J_{C} \rightleftharpoons W \cdot (L_{0}^{2} + \frac{3}{2} L_{0} \cdot L + \frac{3}{5} \cdot L^{2})$

Main metal density (at 20 $^{\circ}$ C) ρ [kg/m³]

Iron: 7860, Copper: 8940, Aluminum: 2700

3 For a load running horizontally

As shown in Fig. 4.7, a carrier table can be driven by a motor. If the table speed is υ [m/s] when the motor rotation speed is $N_{\rm M}$ [r/min], an equivalent distance from the rotation axis is $60\upsilon/(2\pi\cdot N_{\rm M})$ [m]. Then, the moment of inertia of table and load to the rotation axis is calculated as follows:

$$J = (\frac{60v}{2\pi \cdot N_M})^2 \cdot (W_0 + W) \quad [kg \cdot m^2] \qquad (4.13)$$

4 For lifting and lowering load

As shown in Figures 4.8 and 4.9, two loads tied with the rope move in different directions. The moment of inertia can be calculated by obtaining the sum of the moving object's weight as follows:

$$J = (\frac{60v}{2\pi \cdot N_{M}})^{2} \cdot (W_{0} + W + W_{B}) \quad [kg \cdot m^{2}] \quad(4.14)$$

2. Calculation of the acceleration time

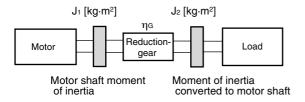


Fig. 4.10 Load model including reduction-gear

Fig.4.10 shows a general load model. Here, the load is tied via a reduction-gear with efficiency $\eta_{\rm G}$.

The time required to accelerate this load to a speed of N_{M} [r/min] is calculated with the following expression:

$$t_{ACC} = \frac{J_1 + J_2/\eta_G}{\tau_M - \tau_L/\eta_G} \cdot \frac{2\pi \cdot (N_M - 0)}{60} \quad [s] \quad(4.15)$$

Where

J₁: Motor shaft moment of inertia [kg·m²]

J₂: Load shaft moment of inertia converted to motor shaft [ka·m²]

 τ_{M} : Minimum motor output torque in driving mode [N·m]

 τ_L : Maximum load torque converted to motor shaft [N·m]

 $\eta_{\text{G}}\!\!:$ Reduction-gear efficiency

As clarified in the above expression, equivalent moment of inertia becomes (J_1+J_2/η_G) considering the reduction gear efficiency.

3. Calculation of the deceleration time

In Fig. 4.10, the time required to stop the motor rotating at a speed of $N_{\rm M}$ [r/min] is calculated with the following expression:

$$t_{DEC} = \frac{J_1 + J_2 \cdot \eta_G}{\tau_M - \tau_L \cdot \eta_G} \cdot \frac{2\pi \cdot (0 - N_M)}{60} \quad [s] \quad(4.16)$$

Where,

 J_1 : Motor shaft moment of inertia [kg·m²]

J₂: Load shaft moment of inertia converted to motor shaft [ka·m²]

 τ_{M} : Minimum motor output torque in braking (deceleration) mode [N·m]

 τ_L : Maximum load torque converted to motor shaft [N·m]

 η_G : Reduction-gear efficiency

In the above expression, generally output torque τ_{M} is negative and load torque τ_{L} is positive. So, deceleration time becomes shorter. However, in a lifted and lowered load, τ_{L} may become a negative value in braking mode. In this case, the deceleration time becomes longer.

* For lifting or lowering load

In inverter and motor capacity selection for lifted and lowered load, the deceleration time must be calculated by using the maximum value that makes the load torque negative.

1.3.3 Heat energy calculation of braking resistor

Braking by an inverter causes mechanical energy to be regenerated in the inverter circuit.

This regenerative energy is often discharged to the resistor. In this section, braking resistor rating is explained.

Calculation of regenerative energy

Regenerative energy generated in the inverter operation consists of kinetic energy of a moving object and its potential energy.

1 Kinetic energy of a moving object

When an object with moment of inertia J [kg·m²] rotates at a speed N_2 [r/min], its kinetic energy is as follows:

$$E = \frac{J}{2} \cdot (\frac{2\pi \cdot N_2}{60})^2 \quad [J](4.17)$$

$$=\frac{1}{1824} \cdot J \cdot N_2^2 \quad [J = kWs] \dots (4.17)^3$$

The output energy when this object is decelerated to a speed N_1 [r/min] is as follows:

$$E = \frac{J}{2} \cdot \left[\left(\frac{2\pi \cdot N_2}{60} \right)^2 - \left(\frac{2\pi \cdot N_1}{60} \right)^2 \right] [J] \dots (4.18)$$

$$= \frac{1}{182.4} \cdot J \cdot (N_2^2 - N_1^2) \quad [J] \quad(4.18)'$$
The energy regenerated to the inverter as shown in Fig.

The energy regenerated to the inverter as shown in Fig 4.10 is calculated by considering the reduction-gear efficiency η_{G} and motor efficiency η_{M} as follows:

$$E \stackrel{:}{=} \frac{1}{182.4} \cdot (J_1 + J_2 \cdot \eta_G) \cdot \eta_M \cdot (N_2^2 - N_1^2) [J] \quad(4.19)$$

2 Potential energy of an object

When an object of W [kg] is lowered from height h_2 [m] to h_1 [m], the output potential energy is expressed as follows:

$$E = W \cdot g \cdot (h_2 - h_1)$$
 [J].....(4.20)

Where, $a = 9.8065 \text{ [m/s}^2\text{]}$

Regenerative energy to the inverter circuit is calculated by considering the reduction-gear efficiency $\eta_{\text{\tiny G}}$ and motor efficiency $\eta_{\text{\tiny M}}$ as follows:

$$E = W \cdot g \cdot (h_2 - h_1) \cdot \eta_G \cdot \eta_M \quad [J \] \ \eqno(4.21)$$

1. Inverter and Motor Selection

1.3.4 Appendix (calculation for other than in SI

All the expressions in this document are based on SI units (International System of Units), In this section, how to convert expressions to other units is explained.

1. Conversion of unit

(1)Force

- 1[kgf] ≒ 9.8[N]
- 1[N] ≒ 0.102[kgf]

(2)Torque

- 1[kgf · m] ≒ 9.8[N · m]
- 1[N · m] ≒ 0.102[kgf · m]

(3) Work and energy

• $1[kgf \cdot m] = 9.8[N \cdot m] = 9.8[J] = 9.8[W \cdot s]$

(4)Power

- $1[kgf \cdot m/s] = 9.8[N \cdot m/s] = 9.8[J/s] = 9.8[W]$
- $1[N \cdot m/s] = 1[J/s] = 1[W] = 0.102[kgf \cdot m/s]$

(5)Rotation speed

- 1[r/min] = $\frac{2\pi}{60}$ [rad/s] \rightleftharpoons 0.1047[rad/s]
- 1[rad/s] = $\frac{60}{2\pi}$ [r/min] \rightleftharpoons 9.549[r/min]

(6)Inertia constant

- J[kg · m2]: moment of inertia
- GD2[kg · m2] : flywheel effect
- $GD^2 = 4J$
- J = $\frac{GD^2}{4}$

(7)Pressure and stress

- $1[mmAq] = 9.8[Pa] = 9.8[N/m^2]$
- 1[Pa] ≒ 1[N/m²] ≒ 0.102[mmAq]
- 1[bar] ≒ 100000[Pa] ≒ 1.02[kg · cm²]
- $1[kg \cdot cm^2] = 98000[Pa] = 980[mbar]$
- 1 atmospheric pressure =1013[mbar] = 760[mmHg] = 101300[Pa] = 1.033[kg/cm²]

2. Calculation formula

(1)Torque, power and rotation speed

- P[W] $\rightleftharpoons \frac{2\pi}{60} \cdot N[r/min] \cdot \tau [N \cdot m]$
- $\bullet \; P[W] \leftrightarrows 1.026 \cdot N[r/min] \cdot T[kgf \cdot m]$
- $\tau [N \cdot m] = 9.55 \cdot \frac{P[W]}{N[r/min]}$
- T[kgf · m] \rightleftharpoons 0.974 · $\frac{P[W]}{N[r/min]}$

(2) Kinetic energy

- E[J] $\rightleftharpoons \frac{1}{182.4} \cdot J[kg \cdot m^2] \cdot N^2[(r/min)^2]$
- E[J] $\rightleftharpoons \frac{1}{730} \cdot \text{GD}^2[\text{kg} \cdot \text{m}^2] \cdot \text{N}^2[(\text{r/min})^2]$

(3) Torque of linear moving load

- [Driving mode]
 $\tau[N \cdot m] \stackrel{.}{=} 0.159 \frac{V[m/min]}{N_M[r/min] \cdot \eta_G} \cdot F[N]$
- T[kgf · m] \rightleftharpoons 0.159 $\frac{V[m/min]}{N_M[r/min] \cdot \eta_G}$ · F[kgf]

[Braking mode]

- $\tau[N \cdot m] \stackrel{.}{\leftrightharpoons} 0.159 \frac{V[m/min]}{N_M[r/min] \cdot \eta_G} \cdot F[N]$
- T[kgf · m] \rightleftharpoons 0.159 $\frac{V[m/min]}{N_M[r/min] \cdot \eta_G}$ · F[kgf]

(4) Acceleration torque

- [Driving mode] $\bullet \tau[\mathsf{N} \cdot \mathsf{m}] \coloneqq \frac{\mathsf{J}[\mathsf{kg} \cdot \mathsf{m}^2]}{9.55} \cdot \frac{\Delta \, \mathsf{N}[\mathsf{r/min}]}{\Delta \, \mathsf{t}[\mathsf{s}] \cdot \, \eta_\mathsf{G}}$
- T[kgf · m] $\ \ \ \ \frac{\text{GD}^2[\text{kg} \cdot \text{m}^2]}{375} \cdot \frac{\Delta \text{ N[r/min]}}{\Delta \text{ t[s]} \cdot \eta_G}$

[Braking mode]

- $\bullet \tau[\mathsf{N} \cdot \mathsf{m}] \stackrel{:}{=} \frac{\mathsf{J}[\mathsf{kg} \cdot \mathsf{m}^2]}{9.55} \cdot \frac{\Delta \; \mathsf{N}[\mathsf{r}/\mathsf{min}] \cdot \eta_{\mathsf{G}}}{\Delta \; \mathsf{t}[\mathsf{s}]}$
- T[kgf · m] $\stackrel{\leftarrow}{=} \frac{GD^2[kg \cdot m^2]}{375} \cdot \frac{\Delta N[r/min] \cdot \eta_G}{\Delta t[s]}$

(5)Acceleration time

- $\bullet \ t_{ACC}[s] \ \buildrel = \ \frac{J_1 + J_2/\eta_G[kg \cdot m^2]}{\tau_M \tau_L/\eta_G[N \cdot m]} \ \cdot \ \frac{\Delta \ N[r/min]}{9.55}$
- $\bullet \ t_{ACC}[s] \buildrel \frac{GD_1^2 + GD_2^2/\eta_G[kg \cdot m^2]}{T_M T_L/\eta_G[kgf \cdot m]} \ \cdot \ \frac{\Delta \ N[r/min]}{375}$

(6)Deceleration time

- $\bullet \ t_{DEC}[s] \ \buildrel = \ \frac{J_1 + J_2 \cdot \eta_G[kg \cdot m^2]}{\tau_M \tau_L \cdot \eta_G[N \cdot m]} \cdot \frac{\Delta \ N[r/min]}{9.55}$
- $\bullet \; t_{\text{DEC}}[s] \ensuremath{\stackrel{.}{=}} \frac{\text{GD}_1{}^2 + \text{GD}_2{}^2 \cdot \eta_G[kg \cdot m^2]}{T_M T_L \cdot \eta_G[kgf \cdot m]} \; \cdot \; \frac{\Delta \; N[r/\text{min}]}{375}$

2. Braking Unit and Braking Resistor Selection

2.1 Selection Procedure

The following three requirements must be satisfied simultaneously:

- Maximum braking torque must not exceed values listed in Tables 3.1 and 3.2 in Chapter 3.
 - To use maximum braking torque exceeding values in the above tables, select one size larger capacity braking unit and resistor.
- 2) Discharge energy for a single braking action must not exceed discharging capability [kWs] listed in the Table. For detailed calculation, see Section 1.3.3 Heat Energy Calculation of Braking Resistor.
- Average loss obtained by dividing discharge energy by cyclic period must not exceed average loss [kW] listed in the Tables 3.1 and 3.2 in Chapter 3.

2.2 Notes on Selection

- The P11S series uses one size smaller capacity braking unit and resistor than those of the G11S series.
- Braking time and duty cycle are converted under deceleration braking conditions based on the rated torque as shown below. However, these value need not be considered when selecting braking unit and resistor capacity.

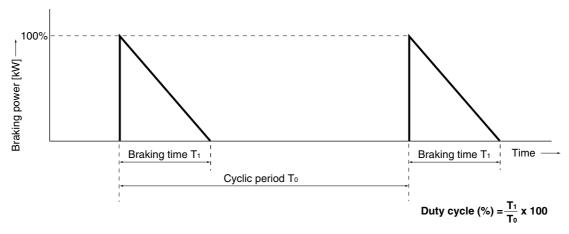


Fig. 4.11 Duty cycle

2.3 Optional fan unit

The standard duty cycle of the optional braking unit of 30kW or larger is 10%. The braking capacity can be increased up to 30% duty cycle by adding an optional fan unit (BU-F).

Contents

1. C	Options	5-2
	Optional control cards	
	Other exclusive options	
1.3	Datailed specifications	5-3
2. (Optional Peripheral Equipment	5-14
	Optional peripheral equipment (FRENIC5000G11S/P11S, JE version)	
2.2	Optional peripheral equipment (FRENIC5000G11S, EN version)	5-15
2.3	Optional peripheral equipment (FVR-E11S, JE version)	5-16
2.4	Optional peripheral equipment (FVR-E11S, EN version)	5-17
2.5	Specifications and dimensions	5-18

1. Options

Options Optional control cards

The following control cards built in inverter (for FRENIC5000G11S Series) are provided as options.

■ List of option cards

Name	Туре	Function
Analog I/O interface card	OPC-G11S-AIO	 Auxiliary input for analog frequency setting (0 to ± 10V, 4 to 20mA) Analog monitoring of inverter output frequency, output current, and torque.
Digital I/O interface card	OPC-G11S-DIO	For setting frequency using a binary code For monitoring frequency, output voltage, output current using a binary code (8 bit)
PG feedback card	OPC-G11S-PG	For performing quick response torque-vector control using feedback signals from a pulse generator. For 12V or 15V dc.
	OPC-G11S-PG2	For performing quick response torque-vector control using feedback signals from a pulse generator. For 5V dc.
	OPC-G11S-PGA	For performing quick response torque-vector control using feedback signals from a pulse generator. The frequency dividing output can be made.
Synchronized operation card	OPC-G11S-SY	For synchronized operation of two motors
Relay output card	OPC-G11S-RY	Includes four relay output circuits. Converts transistor output signals from inverter control output terminals Y1 to Y4 to relay (1SPDT) output signals.

1.2 Other exclusive options

Name	Туре	Function
Extension cable for keypad panel	CBIII-10R-□□	Connects the keypad panel to an inverter unit. Three cable types are available: straight 2m, curled 1m, and curled 2m. The curled 1m cable can be externded up to 5m, and the curled 2m cable up to 10m. Note: Cables once extended to the maximum length do not return to their original length.
IP20 enclosure adapter	P20G11-□ □	Used to put 30kW or larger model to change its enclosure of IP00 into that of IP20.
Mounting adapter for external cooling	PBG11-□□	 Used to put the cooling fan section of the inverter outside the panel. Only applicable to 22kW and below inverters. (30kW and above inverters can be modified to external cooling type by replacing the mounting bracket, as standard.)
Panel-mount adapter	MAG9-□□	Used to put an FRN-G11S inverter to be mounted in panel holes that were used to mount an FVR-G7S inverter.

1.3 Detailed specifications

Type Unit-type	uth: Torque limiting value (Driving, braking), freely. Litputh: 11 types of data can be output. Iminals between 32, 22, C2-21, and 31. DVdc / 0 to ±100%, input impedance: 22kΩ DVdc / 0 to +100%, input impedance: 25bΩ Le resistor (P10) should be connected. Lerminals between AO+, AO-, CS+, and CS-, or max. 2 voltmerters, input impedance: 10kΩ DVdc (10mA) RENIC5000G11S/P11S OPG-G11S-AIO -+ 10V
3 analog inputs (2 voltage inputs and 1 current input): Torque limiting value (Driving, braking quency setting, ratio setting can be input respectively. 2 analog output and 1 current output): 11 types of data can be output. Specifical linput Analog signal input (3 points) by short-circuiting terminals between 32, 22, C2-21, and 31. Terminal 32: Voltage input (both side) : 0 to ±10Vdc / 0 to ±100%, input impedance: 22. Terminal C2: Current input : 4 to 20mAdc / 0 to ±100%, input impedance: 22. For voltage input, power supply terminal for variable resistor (P10) should be connected. Related function code: o22 Output Analog signal output (2 points) by short-circuiting terminals between AO+, AO-, CS+, and Terminal AO+: Voltage output : 0 to ±10Vdc, for max. 2 voltmerters, input impedance: 21. Terminal CS- is current output common Terminal CS- is current output common (Terminal CS- is isolated from terminal 21, 31, and AO-). Related function code: o23 Power source Connection diagram Con	ely. Intiput): 11 types of data can be output. Iminals between 32, 22, C2-21, and 31. Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%,
Quency setting, ratio setting can be input respectively, 2 analog outputs (1 voltage output and 1 current output): 11 types of data can be output.	ely. Intiput): 11 types of data can be output. Iminals between 32, 22, C2-21, and 31. Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 10kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 22kΩ Intiput of to ±100%, input impedance: 250Ω Intiput of to ±100%,
Terminal 32: Voltage input (both side) : 0 to ±10Vdc / 0 to ±100%, input impedance: 22 Terminal 22: Voltage input (single side) : 0 to ±10Vdc / 0 to ±100%, input impedance: 22 For voltage input, power supply terminal for variable resistor (P10) should be connected. Related function code: o22 Output Analog signal output (2 points) by short-circuiting terminals between AO+, AO-, CS+, and Terminal AO+: Voltage output : 0 to ±10Vdc, for max. 2 voltmerters, input impedance: Terminal AO+: Voltage output common Terminal CS+: Current output : 4 to 20mAdc, max. 500\(\Omega\$) Terminal CS-: Current output common (Terminal CS-: Current output	OVdc / 0 to ±100%, input impedance: 22kΩ OVdc / 0 to +100%, input impedance: 22kΩ nAdc / 0 to +100%, input impedance: 250Ω e resistor (P10) should be connected. erminals between AO+, AO-, CS+, and CS-, or max. 2 voltmerters, input impedance: 10kΩ nax. 500Ω AO) OVdc (10mA) PRENIC5000G11S/P11S OPG-G11S-AIO -+ 10V 22kΩ
Terminal AO+: Voltage output common Terminal CS+: Current output : 4 to 20mAdc, max. 500\Omega Terminal CS+: Current output : 4 to 20mAdc, max. 500\Omega Terminal CS-: Si sisolated from terminal 21, 31, and AO) Related function code: o23 Power supply terminal for variable resistor: P10 +10Vdc (10mA) Connection diagram Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA) Power supply terminal for variable resistor: P10 +10Vdc (10mA)	Promax. 2 voltmerters, input impedance: 10kΩ nax. 500Ω AO) OVdc (10mA) PRENIC5000G11S/P11S OPG-G11S-AIO
Source Connection diagram Power supply Three-phase 200 to 230V 50/60Hz or Three-phase 400 to 480V 50/60Hz Operation command input Frequency setting device Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Current input (+) Current input (+) Connection diagram MCCB or FRENIC5000G11S/P11S FRENIC5000G11S/P11S FRENIC5000G11S/P11S FRENIC5000G11S/P11S FRENIC5000G11S/P11S Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ) Voltage input (1kΩ)	PRENIC5000G11S/P11S
Power supply Three-phase 200 to 230V 50/60Hz or Three-phase 400 to 480V 50/60Hz Operation command input Setting device VR VR VR VR VR VR VR VR VR VR VR VR VR	OPG-G11S-AIO -→ 10V 22kΩ
Power supply Three-phase 200 to 230V 50/60Hz or Three-phase 400 to 480V 50/60Hz Operation command input CM FWD setting device VR Setting d	OPG-G11S-AIO → 10V 22kΩ 12
Analog voltmeter Analog ammeter Analog ammeter Analog ammeter Analog ammeter CS+ CS+ Analog ammeter CS+ Analog ammeter Analog ammeter	250Ω

1. Options

Name		Digital I/O interface card							
Туре	OPC-G11S-DIO								
	-								
Function		4 digital inputs : Binary code input of max. 16 bits or four-digit BCD input (Sink/Source changeable) 3 digital outputs : Binary code output of max. 8 bits.							
Specifica-Input tions		Digital signal input (4 points) by short-circuiting terminals between I1, I16, and M1 <sink> ON operation current : 4.5mA max.</sink>							
		OFF operation voltage: 27V max. <source/> ON operation current: 4.5mA max.							
		OFF operation voltage: 27V max. Related function code: 019, 022							
Output Digital signal output (3 points) by short-circuiting terminals between O1 to O6, and M2 <sink> ON operation current : 50mA max. OFF operation voltage : 27V max. <source/> ON operation current : -50mA max. OFF operation voltage : 27V max. Related function code : o21</sink>						s between O1 to O6, and M2.			
	Power source	+24Vdc (3.2mA x 8 = 25.6mA)							
Connection	on diagram	<input interface=""/>		ce>	<outpu< th=""><th>at interface></th></outpu<>	at interface>			
		Power	Туре	Connection diagram	Туре	Connection diagram			
		Internal		M1 No Calv Source CM CM CM	Sink				
		External	Sink	M1 D CM QAV QAV QAV QAV QAV QAV QAV QAV QAV QAV	SIIIK	01-08: T : T : T : 24V			
		Internal	- Source	P24 (Control PC board: EN) (Control PC board: EN) (Sink Source (M) (M)	Source	01-08 A			
		External		M1 Poly (24V) M1 Poly (24V) M1 Poly (24V) M2 Poly (24V) M1		24V			
Remarks									

Name		PG feedback card						
Туре	Card-type	OPC-G11S-PG						
	Unit-type	-						
Function		To perform spe	ed control by	detecting motor rotating speed using a pulse generator.				
Specifica tions	- Control	Speed control	range	1:1200 (3 to 3600r/min)				
uons		Maximum speed		3600r/min (120Hz)				
		Speed contro	accuracy	± 0.02%				
		Speed control	response	40Hz				
	Applicable encoder (generator)	No. of output pulse: 100 to 3000P/R A/B phase (incremental) Maximum response frequency: 100kHz Pulse output method: Totem pole / open collector, Output current: 7mA or more						
	Input terminal	YA, YB, CM Connect A- and B-phase output signal from pulse generator on feedback side						
		YZ, CM	Connect Z-phase output signal from pulse generator on feedback side. When the pulse generator does not have Z-phase, these terminals need not be connected.					
	Output	None						
Connecti	on diagram	*1) Use external exceeds 120 *2) Take note of 1. When using L1/R L2/S L3/T FRENIG 5000G OP 1, 3) 1, 11 1, 12 1, 15 1	er source: +12 power source w mA. the power source g inverter interna	2Vdc (-10%) to +15Vdc (+10%)/300mA or less *2) (Terminal: PI, CM) when more than one PG feedback cards are used and the total input current remarks the specifications of the applied pulse generator. 2. When using external power supply 12/S 15V 12V 12Vdc ±10% 15Vdc ±10%				
		* Pin J2 can be connected to both 12V side and 15V side.						
Remarks		Terminals XA, XB, and XZ are not in use.						

^{*)} OPC-G11S-PG2 for 5Vdc power source is available.

1. Options

Name		PG feedback card (PG power input : +5V)							
Type Card-type		OPC-G11S-PG2							
	Unit-type			-					
Function		To perform spe	ed control by	detecting motor rotating speed u	sing a pulse generator.				
Specifica- tions	Control	Speed control	l range	1:1200 (3 to 3600r/min)					
tions		Maximum spe	ed	3600r/min (120Hz)	For the applicable motor,				
		Speed control	l accuracy	± 0.02%	see the combination list of inverter and dedicated motor with PG.				
		Speed control	l response	40Hz	1				
	Applicable pulse generator	No. of output Maximum res Pulse output	ponse frequer						
	Input terminal	YA, YB, CM Connect A- and B-phase output signal from pulse generator on feedback side							
		YZ, CM Connect Z-phase output signal from pulse generator on feedback side. When the pulse generator does not have Z-phase, these terminals need not be connected.							
	Output	None							
Connection	on diagram	External powers 1) Use external exceeds 200 *2) Take note of 1. When using L1/R	er source: +5V power source womA. the power source g inverter internative of the power source	then more than one PG feedback can be matches the specifications of the and power source 2. When	nomA or less *2) (Terminal: PI, CM) rds are used and the total input current applied pulse generator. using external power supply				
Remarks		Terminals XA,	XR and X7 ar	e not in use					
- IGIIIAI NS		Tierriinais AA,	AD, and AZ an	o not in use.					

Name		PG feedback card (Frequency dividing output)							
Type Card-type Unit-type		OPC-G11S-PGA							
		-							
Function						ing a pulse generator. ses from the pulse generator.			
Specifica-	Control	Speed contro	l range	1:1200 (3 to 3600r/i					
tions		Maximum spe	ed	3600r/min		For the applicable motor,			
		Speed contro	accuracy	± 0.02%		see the combination list of inverter and dedicated motor with PG.			
		Speed control response		40Hz		and dedicated motor warring.			
	Applicable pulse generator	 No. of output pulse: 20 to 3000P/R A/B phase (incremental) Maximum response frequency: 100kHz (Totem pole) / 25kHz (Open collector) Total wiring length: 100m (Totem pole) / 20m (Open collector) Pulse output method: Line driver 							
	Input terminal	YA, YB, CM Connect A- and B-phase output signal from pulse generator on feedback side							
	torrina	YZ, CM				enerator on feedback side. When the se terminals need not be connected.			
	Output	FYA, FYB: A-phase, B-phase frequency dividing output terminal Frequency dividing ratio: 1/1 to 1/64 Rating: 27Vdc max., 50mA max.							
	Internal power source: +15Vdc ±5%/120mA *1), +12Vdc ±5%/120%mA *1) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (+10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (+10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (+10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +15Vdc (±10%)/300mA or less *2) (Terminal: Power source: +5Vdc (±10%) to +1								
Connection	n diagram	When using inverter internal power source 2. When using external power supply							
		L1/R L2/S L3/T FRENIC 5000G1	U (0)————————————————————————————————————	M	— © L1/F — © L2/S — © L3/F FRI 500	R U Ø M			
		* Pin J2 can be connected to both 12V side and 15V side.							
Remarks		Terminals XA, XB, and XZ are not in use.							

1. Options

Combination list of inverter and dedicated motor with PG

Power	Invert	er	D				
supply voltage	Туре	Rated output current [A]	Туре	Rated output current [A]	Maximum speed [r/min]	Remarks	
	FRN0.2G11S-2	1.5		_	_	*3)	
	FRN0.4G11S-2	3	_	_	_		
	FRN0.75G11S-2	5	MVK6096A-C	4.8			
	FRN1.5G11S-2	8	MVK6097A-C	7			
	FRN2.2G11S-2	11	MVK6107A-C	11			
	FRN3.7G11S-2	17	MVK6115A-C	18		*1)	
	FRN5.5G11S-2	25	MVK6133A-C	27	3600	*2)	
	FRN7.5G11S-2	33	MVK6135A-C	37			
hree-	FRN11G11S-2	46	MVK6165A-C	49			
hase	FRN15G11S-2	59	MVK6167A-C	63]		
00V	FRN18.5G11S-2	74	MVK6184A-C	74	1		
	FRN22G11S-2	87	MVK6185A-C 90		*1)		
	FRN30G11S-2	115	MVK6206A-C	116		*2)	
	FRN37G11S-2	145	MVK6207A-C 143 3000				
	EDN450440.0	100	MVK6208A-C	170	†	*4)	
	FRN45G11S-2	180	MVK9221A-C 180			1	
	FRN55G11S-2	215	MVK9250A-C				
	FRN75G11S-2	283	MVK9252A-C				
	FRN90G11S-2	346	MVK9280A-C	280 328	2000	-	
	FRN0.4G11S-4	1.5			*3)		
	FRN0.75G11S-4	2.5			-	",	
	FRN1.5G11S-4	3.7	-	_			
	FRN2.2G11S-4	5.5	-				
	FRN3.7G11S-4	9	MVK6115A-C	9			
	FRN5.5G11S-4	13	MVK6133A-C	1	*2)		
	FRN7.5G11S-4	18	MVK6135A-C	-/			
	FRN11G11S-4	24	MVK6165A-C				
	FRN15G11S-4	30	MVK6167A-C	24.5	3600		
	FRN18.5G11S-4	39	MVK6184A-C				
	FRN22G11S-4	45	MVK6185A-C				
	FRN30G11S-4	60	MVK6206A-C	45 58		-	
	FRN37G11S-4	75	MVK6207A-C	71	3000		
hree-	FNN37G113-4	/5	MVK6207A-C		3000	*4)	
hase 00V	FRN45G11S-4	91	MVK9221A-C	85 87		4)	
	EDNICEO440 4	110			3400		
	FRN55G11S-4	112			2400		
	FRN75G11S-4	150	MVK9252A-C	140		-	
	FRN90G11S-4	176	MVK9280A-C 164 MVK9282A-C 196				
	FRN110G11S-4	210			- 0000		
	FRN132G11S-4	253	MVK9310A-C	236	2000		
	FRN160G11S-4	304	MVK9312A-C	283	-		
	FRN200G11S-4	377	MVK9316A-C	351	4		
	FRN220G11S-4	415	MVK9318A-C	389			
	FRN280G11S-4	520	Contact Fuji				
	FRN315G11S-4	585					
	FRN355G11S-4	650					
	FRN400G11S-4	740					

^{*1)} The inverter rated output current is larger than the motor rated current and the motor thermal characteristics has limitation. Use the equipment at ambient temperature 40°C or below.
*2) Though the inverter rated output current is larger than the motor rated current. There is no problem in use.
*3) The combination should be studied for each product. Contact Fuji.
*4) You can select an appropriate motor out of two types motors.

N	lame			Synchronized operation card							
Туре	Card-type	OPC-G11S-SY									
	Unit-type	_									
Function				y pulse train input, synchronized operation of 2 motors (simultaneoustion and proportional speed ratio operation)							
Specifica-	Control	Speed contro	l range	1:1200 (3 to 3600r/min)							
แบบร		Maximum spe	ed	3600r/min (120Hz)							
		Speed contro	l accuracy	± 0.02%							
		Speed contro	l response	40Hz							
	Applicable encoder (generator)	Maximum resWiring length	ponse frequer : 100m (Totem	000P/R A/B phase (incremental) ncy: 100kHz (Totem pole) / 25kHz (Open collector) n pole) / 20m (Open collector) n pole / Open collector, Output current: 7mA or more							
	Input	Terminal Function									
		XA, XB, CM	Connect A- and B-phase output signal of master rotary encoder.								
		XZ, CM	Connect Z-phase output signal of master rotary encoder.								
		YA, YB, CM	Connect A- a	and B-phase output signal of feedback or master rotary encoder.							
		YZ, CM	Connect Z-ph	nase output signal of feedback or master rotary encoder.							
	Output	None									
	source	(Terminal: PC • External powers) *1) Use external current exce), CM) er source: +12 power source w eds 120mA.	Vdc ±10% / 120mA, +12Vdc ±10% / 120mA (Changeable on PC board)*1) 2Vdc (-12%) to +15Vdc (+10%) / 300mA or less *2) (Terminal: PI, CM) when more than one synchronized operation cards are used and the total input ce matches the specifications of the applied rotary encoder.							
Connection	on diagram	1. <master side=""> <slave side=""></slave></master>									
		OF	PC-G11S-SY 12Vdc - PI	DL1/R □ L2/S □ L3/T □ L3/T □ CSUNGTIS							
		When using ex	ternal power s	d for when inverter internal power source is used. source, perform connection similar to the above connection, by referring to er supply" of PG feedback card (page 5-5)							
Remarks		1									

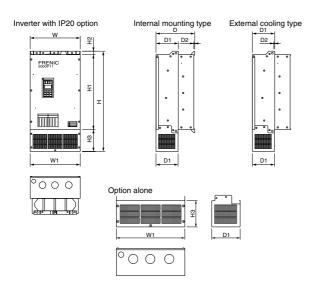
1. Options

Name Card-type		Relay ou	itput card						
Туре	Card-type	OPC-G11S-RY	*)						
	Unit-type	-	-						
Function		 Includes four relay output circuits. Converts transistor output signals from inverter control output terminals Y1 to Y4 to relay (1SPDT) output signals. 	In addition to the relay output function, PG vector control can be performed with the feedback signal from pulse generator.						
Specifica-	Input	None	Connect the pulse generator A-phase, B-phase output signal.						
	Output	Four-channel contact (12 terminals from Y1A to Y4C) 250Vac, 0.3A, $\cos \emptyset = 0.3$	None						
	Power source	The power source to drive the relay card is supplied from inverter.	Internal power source: +15Vdc ±10%/120mA, +12Vdc ±10%/120mA (Changeable on PC board) *1) External power source: +12Vdc (-10%) to +15Vdc (+10%)/300mA or less *2) *1) Use external power source when more than one relay output cards are used and the total input current exceeds 120mA. *2) Take note of the power source matches the specifications of the applied pulse generator.						
Connection	on diagram	OPC-G11S-RY	Refer to the connection diagram of PG feedback card.						
		+13Vdc +13Vdc Y1A Y1B Y1C +13Vdc							
		Y2A Y2B Y2C +13Vdc							
		Y3A Y3B Y3C							
		+13Vdc +13Vdc Y4A Y4B Y4C							
Remarks			*) When the relay output card has to be used together with the PG feedback card, the card will be made-to-order. Contact Fuji.						

Optional communication card
The following optional communication card are available for FRENIC5000G11S series inverter.

Name	Туре	Function	
T-link card	T-link card OPC-G11S-TL • Setting of operation frequency		
		• Setting of operation command (FWD, REV, RST, etc.)	
		Setting and reading out of function code and data code	
		Monitoring of operating status	
		Reading out of inverter trip data	
Open-bus card	OPC-G11S-PDP	Conforming to Profibus	
	OPC-G11S-DEV	Conforming to DeviceNet	
	OPC-G11S-MBP	Conforming to Modbus Plus	
	OPC-G11S-IBS	Conforming to Interbus-S	
	OPC-G11S-COP	Conforming to CAN-open	

For details of open-bus cards, see individual instruction manual.


1. Options

Type Card-type OPC-G11S-TL	
Unit-type –	
Function To connect inverter to FUJI MICREX series PLC to control inverter from PLC. Setting and monitoring function data for function codes can be made.	
Specifica- Transmission tions T-link slave I/O transmission	
No. of words used 8 words: MICREX → Inverter: 4 words Inverter → MICREX: 4 words	
Terminal T1, T2, SD: T-link cable connection terminal (Use general-purpose cable described in instruction manual.)	
Relative o27, o28, o29 function code	
Power source None	
Connection diagram MCCB or ELCB © L1/R © L2/S U © W MICREX Processor 12 Sub Terminating Terminating Di capsule 17 12 SD Station No. 20 (Wided pair Resided all Station No. 50 Terminals R0, T0 are not provided with inverters of 0.75kW or smaller.	
Remarks	

■ Exclusive option specifications

• IP20 enclosure adapter (P20G11-___)

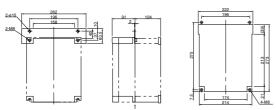
Used to put 30kW or larger model to change its enclosure of IP00 into that of IP20.

[200V series]											
Option type	Invert	er type				Dime	nsions	s [mm]			Mass
Option type	G11S series	P11S series	w	W1	Н	H1	H2	НЗ	D	D1	D2	[kg]
P20G11-30	FRN30G11S-2JE	FRN30P11S-2JE	240	342.4	705	500	25	180	255			31
F20G11-30	-	FRN37P11S-2JE	340	342.4	705	500		160	255			اد ا
	FRN37G11S-2JE	-			790	565		200	270			38
	-	FRN45P11S-2JE		377.4	730	303						
P20G11-75-4	FRN45G11S-2JE	-	275		915					145	4	47
F20G11-75-4	-	FRN55P11S-2JE	3/3			690				145	4	
	FRN55G11S-2JE	-										49
	-	FRN75P11S-2JE										49
P20G11-75-2	FRN75G11S-2JE	-	E20	533.2	1000	685		282.5	285			76
F20G11-75-2	-	FRN90P11S-2JE	530	555.2	1000	000	32.5	202.5	200			
P20G11-220	FRN90G11S-2JE	-	600	683.2	1230	815		382.5	360	220		125
F20G11-220	_	FRN110P11S-2JE	000	003.2	1230	615		302.5	300	220		125

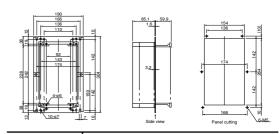
Ontion tuno	Inverter type					Dime	nsions	s [mm]			Mass
Option type	G11S series ☐:JE or EN	P11S series	W	W1	Н	H1	H2	НЗ	D	D1	D2	[kg]
D00011.00	FRN30G11S-4 [*1)	FRN30P11S-4JE	040	040.4					٥٠٠			
P20G11-30	-	FRN37P11S-4JE	340	342.4					255			31
	FRN37G11S-4□	-			705	500		180				
	-	FRN45P11S-4JE								145		36
P20G11-55	FRN45G11S-4□	-					25					42
	-	FRN55P11S-4JE	075	377.4		625	25		270	145		42
	FRN55G11S-4 □	_	3/5	377.4	630	025			2/0			40
	-	FRN75P11S-4JE										43
D00011 75 1	FRN75G11S-4 □	-				000	1				١.	
P20G11-75-4	-	FRN90P11S-4JE				690					4	51
	FRN90G11S-4□	_			915	675						
P20G11-110	FRN110G11S-4	FRN110P11S-4JE						207.5	315	175		76
	-	FRN132P11S-4JE										
	FRN132G11S-4 🗌	_	530	533.2			1					
P20G11-160	FRN160G11S-4	FRN160P11S-4JE			1300		32.5	332.5				108
	-	FRN200P11S-4JE								000		
	FRN200G11S-4	_				935			360	220		
P20G11-220	FRN220G11S-4	FRN220P11S-4JE	680	683.2	1350			382.5				150
	_	FRN280P11S-4JE	1									

NOTE: *1) JE FRN30G11S-4JE EN ... FRN30G11S-4EN or FRN30G11S-4EV

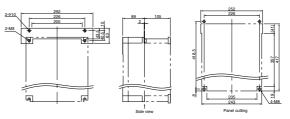
• Mounting adapter for external cooling (PGB11-___)


Used to put the cooling fan section of the inverter outside the panel.

Only applicable to 22kW or smaller inverter. (30kW or larger inverter can be modified to external cooling type by replacing the mounting bracket, as standard.)



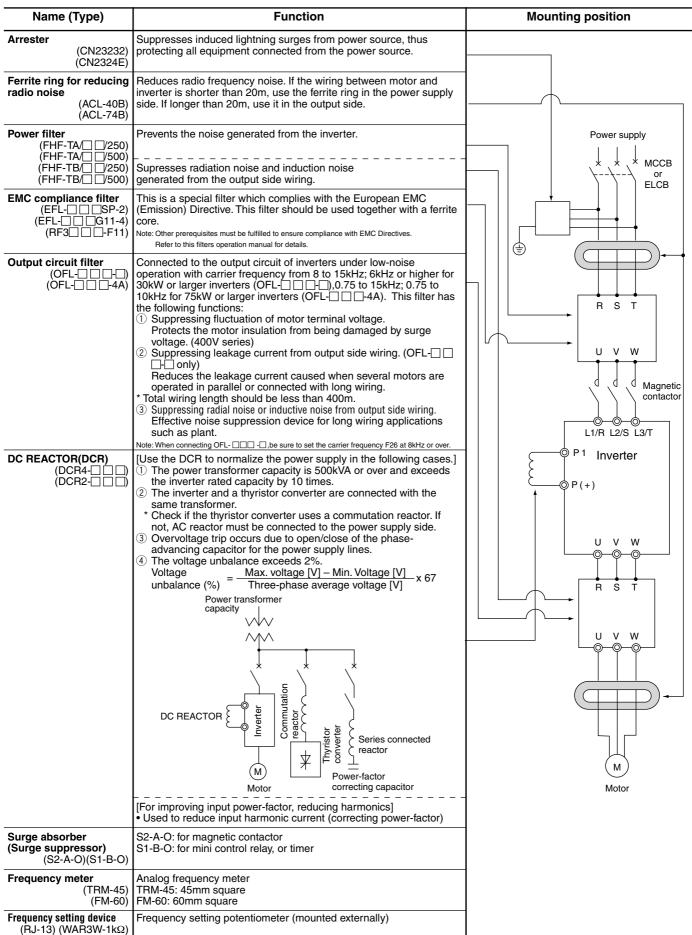
Option type	Applicable inverter	Α
PBG11-0.75	FRN0.2G11S-2JE to FRN0.75G11S-2JE FRN0.4G11S-4□	34.9
	FRN0.75G11S-4□	49.9


☐: JE or EN

Option type	Applicable inverter
PBG11-7.5	FRN5.5G11S-2JE to FRN7.5G11S-2JE FRN5.5G11S-4 ☐ to FRN7.5G11S-4 ☐ FRN5.5P11S-2JE to FRN11P11S-2JE FRN5.5P11S-4 ☐ to FRN11P11S-4 ☐
☐: JE or EN	

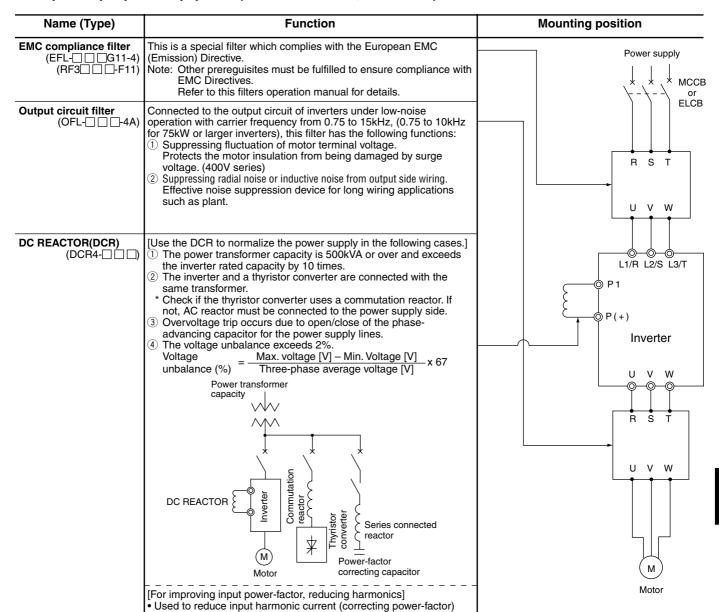
Option type	Applicable inverter	
PBG11-3.7	FRN1.5G11S-2JE to FRN3.7G11S-2JE FRN1.5G11S-4 \[\text{to FRN3.7G11S-4} \[\text{*1} \]	
□·.IE or EN	1) IF FRN3 7G11S-4 IF FN FRN4 0G11S-4	ΕN

Option type	Applicable inverter
PBG11-22	FRN11G11S-2JE to FRN22G11S-2JE FRN11G11S-4□ to FRN22G11S-4□ FRN15P11S-2JE to FRN22P11S-2JE FRN15P11S-4JE to FRN22P11S-4JE


☐: JE or EN

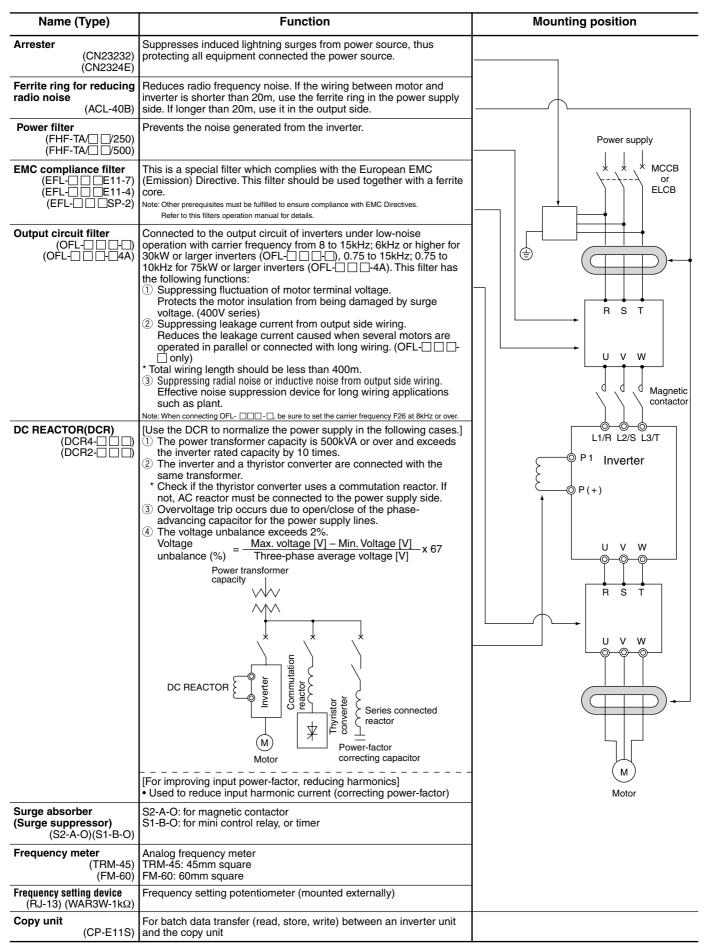
Chapter 5

2. Optional Peripheral Equipment


2. Optional Peripheral Equipment

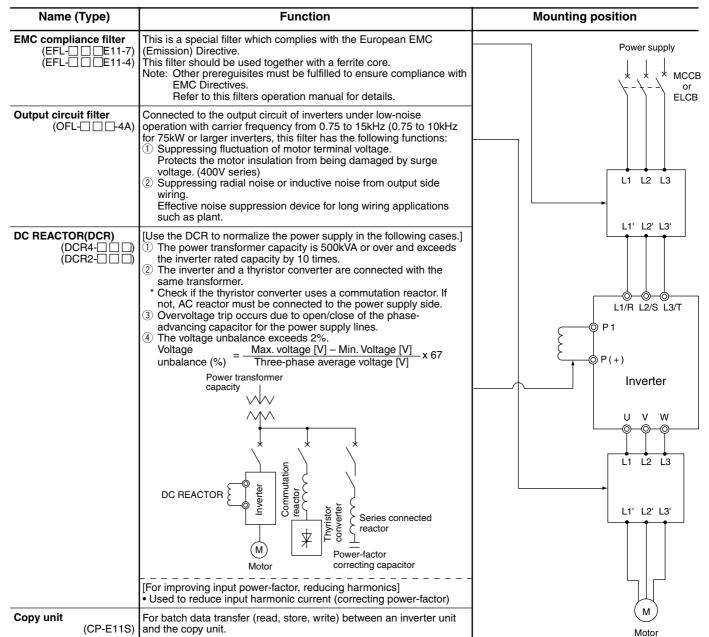
2.1 Optional peripheral equipment (FRENIC5000G11S/P11S, JE version)

^{*)} For the detailed selection, refer to Chapter 3, Peripheral Equipment.


2.2 Optional peripheral equipment (FRENIC5000G11S, EN version)

^{*)} For the detailed selection, refer to Chapter 3, Peripheral Equipment.

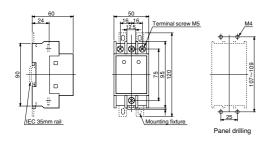
2. Optional Peripheral Equipment


2.3 Optional peripheral equipment (FVR-E11S, JE version)

^{*)} For the detailed selection, refer to Chapter 3, Peripheral Equipment.

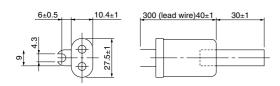
5-16

2.4 Optional peripheral equipment (FVR-E11S, EN version)


^{*)} For the detailed selection, refer to Chapter 3, Peripheral Equipment.

Chapter 5

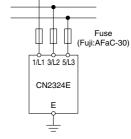
2. Optional Peripheral Equipment


2.5 Specifications and dimensions

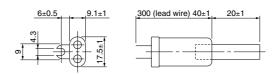
• Arrester (CN23232, CN2324E)

• Surge absorber (S2-A-O, S1-B-O)

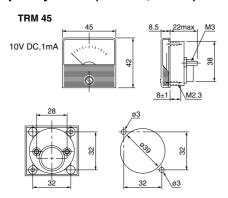

S2-A-O (for magnetic contactor)


1/L1 3/L2 5/L3

CN23232


• Three-Phase 220V AC

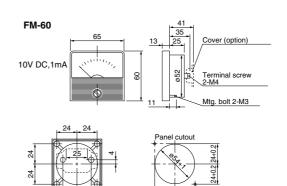
• Three-Phase 440V AC



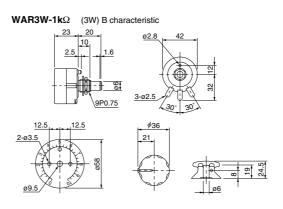
S1-B-O (for mini contorol relay or timer)

Fuse

• Frequency meter (TRM-45, FM-60)


• Frequency setting device (RJ-13, WAR3W-1kΩ)

RJ-13 BA-2B Characteristic 1kΩ 6.5 13.3 P=0.75 _ 15


Legend plate(YS549810-0) Knob(MSS-2SB)

The legend plate and knob must be ordered as a separate item.

Approx. Mass: 70g

The legend plate and knob are shipped together with the setting device.

Chapter 6 Application Idea

Contents

1.	S	etting Items and Applications	6-2
2.	F	RENIC5000G11S/P11S Series	6-4
	2.1	Using with Aeration Tank Blowers	6-4
	2.2	Using with Multi-storied Automated Warehouses	6-6
	2.3	Using with Automated Parking Garages	6-8
	2.4	Using with Vertical Circulation type Parking Facility	6-10
	2.5	Using with Bread Dough Mixers	6-12
	2.6	Using with Commercial-use Washing Machines	6-14
	2.7	Using with Belt Conveyors	6-16
	2.8	Using with Grinding Machines	6-18
	2.9	Using with Fans for Air Conditioning Unit (1)	6-20
	2.10	Using with Fans for Air Conditioning Unit (2)	6-22
	2.11	Using with Cold/Warm Water Pumps	6-24
	2.12	Using with Line/Inverter Changeover Operation	6-26
3.	F	VR-E11S Series	6-30
	3.1	Using with Belt Conveyors	6-30
	3.2	Using with Multi-storied Automated Warehouses	6-32
	3.3	Using with Cold/Warm Water Pumps	6-34
	3.4	Using with Fans for Air Conditioning Unit (1)	6-36
	3.5	Using with Fans for Air Conditioning Unit (2)	6-38
	3.6	Using with Centrifngal Separators Spin Dryers	6-40

Chapter 6

1. Setting Items and Applications

The FRENIC5000G11S/P11S and FVR-E11S provides highest performance when parameters are set optimally for each application and the suitable options are used. Parameter settings for various type of load and option applications are described bellow. Section 1 gives a list of setting items and applications and Section 2 and later sections describe how to make setting and choose the best values.

1. Settin	ig Items a	nd Applications					0:	Refer	rtant l ence l able Ite	ltem			e with e with				
	Function	Application	Common	Pump	Fan and blower	Horizontal carrier		Extruder	Agitator	Washing machine	Centrifugal separator	High frequency motor	Tap water or water immersed cooling motor	Two motors switching	Pressing machine	Group operation	Load balance control
Basic function	F01 Fred	quency command 1	0	0	0	0	0	O	0		0	0	0	0	0	0	0
	F02 Ope	eration method	0			0			0	¦		0	T 🔘 🗆		0	¦	
	F03 Max	kimum frequency 1	0			0	! ⊚		0		. O	0	 !		0	0	
		e frequency 1	0	0	I ()	0	i	I ()	0	I	·	0	0	· ©	0	· ©	0
	F05 Rate	ed voltage 1	0		O	0	1 — — 1 ©		0	©		0	†	0	0		[
	F07, F08 Acc	eleration/Deceleration time 1	0					[o	0		. o	0	 - 0		0		
	F09 Toro		©	. □			. 0	 !	0	·	. □ □	0			0	. 0	 !
	F10 to F12 Elect	ronic thermal overload relay (for motor1)		+	1 — — 1 ©	0	I	 ı ◎	0	I I ◎	+		+ A				⊢
	F13 Electr	ronic thermal overload relay (for braking ressister)		г — - ı	ı — —	0	0		0		, O	0	T	0		ı — —	г — — Г
	F14 Res	tart after momentary power failure		 !	. O	0	. 0		0	0		0	.	. 0	0	. o	
	F15, F16 Fred	quency limiter		└	0		1					0	$\overline{}$			'	L
		n for frequency setting signal		⊢	1 — — I		1 — —	⊢ I		I	+ I		+ '	— — 		l — —	⊢
	 F18 Bias	s frequency		[1			ı	T — —		T	– –		ı — —	г — —
	F20 to F22 DC			<u>-</u>	. 0	0	: !	<u>-</u>			!	0	<u>-</u>		†	:	<u>-</u>
	F40, F41 Toro			∟	' — — I		0	O	0		· ◎			' — — !	0		
	F42, A09 Toro			⊢	1 — — I	0	ı	O	0	I	+ ı	0	+ 	— — 	0	l — —	⊢
	C05 to C19 Mult	tistep frequency setting		г – – ') — — !		0		0		T — —		T	0) — —	г — —
		nber of motor poles 1, 2		<u>-</u> – –	:		<u> </u>	<u>-</u>	†	<u>-</u>	<u>:</u>		-	<u>-</u> -		: :	<u>-</u>
		compensation control 1, 2		L I	1		I	∟ I (() +	 © +	 	L	:	⊥ 	 	 		∟ □
Input terminal	E01 to E09 X1-X	X9 terminal function selection				0	O	 	0		O		 	 		l	
fnction *1)	E10 to E15 Acc	eleration/Deceleration time 2 to 4		r – –	ı – –]			i	r – –	:	T	0	† - -) — —	r – –
2nd Torque boost	A05 Toro	que boost 2		! !	<u>. </u>	0	! !	<u> </u>		<u>.</u> !	! !		<u> </u>	<u> </u>		! !	!
FM terminal	F30, F31 FMA	A terminal								l	l			l I		l I	l
function *2)	F33 to F35 FMF			⊢	1 — — I		1	 	†	I	+ I		+ ı	— — 	†	l — —	⊢
Output	E20 to E24 Y1-	Y5 terminal function		l I	1		I I	1		I I	l I		1	 	0	l 1	
terminal function *3)	E20 to E24 FAF			<u>-</u> – –	i		:	<u>-</u>		<u>-</u>	<u>-</u> -		-	<u>-</u> -		:	<u>-</u>
1011011011 3)	E20 to E24 FDT	function signal		L 						! !	L			 	† - -		∟
	E20 to E24 OL t			+	-l — —		1 — — I	 		 	+ ı		+	ı — —		I — —	⊢
Frequency	F23, F24 Star			 	I I		[[I I		 	 		I I	l I		 	
control	C01 to C04 Jum			<u>-</u> !	!		!	<u>'</u>		<u>'</u>	<u>:</u>		<u>-</u> – –	<u>-</u> –	 	:	<u>-</u> – – !
		quency setting signal filter		L 	l _ ' _		l 	L		 	L		⊥ I	 	†	l — —	∟
LED and LCD		ficient for machine speed and line speed		l		0	0			1	0	0		l		l .	
monitor		monitor (G11S / P11S only)		- 	i	├ - -	i			<u> </u>			T – –		 		
		D monitor (G11S / P11S only)		<u>-</u> – –	<u>'</u> – –		<u> </u>	<u>-</u>		<u>-</u>	<u> </u>	:	 	<u> </u> – –		¦ – –	<u>-</u>

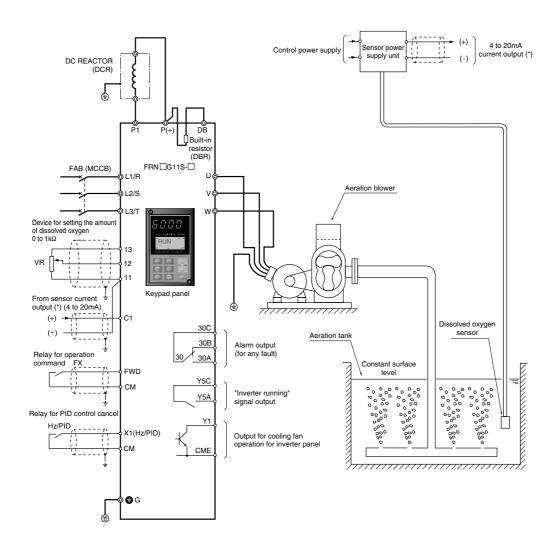
	Func	Applic	ation	Common	Pump	Fan and blower	Horizontal carrier		Extruder	Agitator	Washing machine	Centrifugal separator	frequ	Tap water or water immersed cooling motor	Two motors switching	Pressing machine	Group operation	Load balance control
Pattern	C21 to C2	8 Pattern operation *4			I	i		i		0	0	O		<u> </u>			!	
operation	H07	ACC/DEC pattern			Г — 	0					0			T				
Special	F26	Motor sound (carrier	frequency)			0		l l	 	0	I I	I L		 	 		I I	
functions	E46	Language (G11S/P1	S only)	0		. – – ! – –		i	 			 !					i	
	E47	LCD monitor (brightnes	s)(G11S/P11S only)		! !	' '	L	l 		l	<u> </u>	<u> </u>		<u> </u>		L	! !	<u>.</u>
	H03	Data initializing			I L			l			 	I L		I L			l I	I L
	H04, H05	Auto-reset		0	I .						!	I .					1	
	H08	Rev. phase sequence	lock(G11S/P11S only)		i -			i — —			i -	1		i – –			1	
	H10	Energy-saving operat	ion			0		l — —				T — —		T] 	
Motor	P02 to P0	8 Motor 1 rating / imped	dance		I L	l l	0		0	0		<u> </u>	0		0	0		
characteristics	A11 to A1	7 Motor 2 rating / imped	dance			. — — !		i — —	 		! !	 !		 	0		. — — !	
Other	Option for	braking			l		0	0			0	. O		1	0		l	
inspection items	Motor prot	tection			I I			l I			 	I I	0		0		0	
Recommended inverter application G11S (CT use)			I I		0		0	0	O	<u> </u>	0	<u> </u>	0	0	<u> </u>	ī		
			P11S (VT use)	0	. O	0						i .		1			i i	
			E11S	0	0	0	0	0				0		l	0		l	0
Page for refere	ence				6-24 6-34	6-4	6-16 6-30				6-14	6-40		 			 	6-16 6-30

^{*1)} E11S uses "E01 to E05" and "E10, E11."

^{*2)} For E11S, the operation selection FMA or FMP is required at "E29." E11S only uses F33 and F34.
*3) E11S only uses E20 and E21.
*4) E11S only uses C21 and C22.

2. FRENIC5000G11S/P11S Series

2.1 Using with Aeration Tank Blowers


■ Advantages

1. Features a built-in PID control function.

- Excess blower airflow can be eliminated constantly maintaining a fixed amount of dissolved oxygen in the aeration tank.
 This results in energy savings.
- The use of a built-in PID control function makes conventional controllers unnecessary. Controlling the amount of dissolved oxygen can easily be achieved simply by installing a sensor (4 to 20mA) that detects dissolved oxygen.
- 2. Greater energy savings realized with the automatic energy saving operation function.
- The energy saving effect is not as impressive for aeration tank blowers compared with the results achieved with other

- types of blowers. However, energy savings are significantly enhanced once the automatic energy saving operation is activated, when the system has sufficient treatment capacity.
- 3. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.
- We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The inverter, whose sound levels are comparable to those of commercial power sources.

■ Wiring diagram/System configuration

Function code	Name	Factory setting	Recommended setting value	Remarks
H20	PID control (Mode select)	0: Inactive	0: Inactive	Operation without PID function is selected.
			1: Active	
H21	(Feedback signal)	1: Terminal C1 (4 to 20mA) input	1: Terminal C1 (4 to 20mA) input	
H22	(P-gain)	0.01: 0.01 times	0.01 times (= 1%) to 10 times (= 1000%)	Set the functions according to
H23	(I-gain)	0.0: Inactive	0.1 to 3600s	individual system.
H24	(D-gain)	0.00: Inactive	0.1 to 10.00s	
H25	(Feedback filter)	0.0: No filter	0.0: No filter	
E01	X1 terminal (Function select)	0: Multistep freq. selection	20: PID control cancel	Manual operation when input signal is ON. (Frequency setting with Keypad panel)
F09	Torque boost 1	0.0: For constant torque load	0.0: For constant torque load	
H10	Energy-saving operation		1: Active	
H06	Fan stop operation	0: Inactive	1: Active	
E20	Y1 terminal (Function select)	0: Inverter running	25: Fan control signal	Used to control the inverter panel cooling fans for inverters of 30kW or larger. Also available with Functions E1 to E23 (Y2 to Y4 terminal functions).
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	3: Active (Continuous operation; heavy inertia load, or general load)	Set H13 to H16 also, if necessary.
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW or larger inverter.
E24	Y5A,Y5C terminal function (Relay output)	15: Auxiliary terminal for 52-1 [AX](JE) 10: Ready output [RDY](EN)	0: Inverter running (RUN)	Relay output (Y5A, Y5C). On when inverter output is present. (Set if necessary.)
F41	Torque limiter 1 (Braking)	999: No limit (JE)	0: Automatic deceleration control	Setting recommended when
		150: 150% (EN: 22kW or smaller)		braking resistor is not used.
		100: 100% (EN: 30kW or larger)		
C01 to C03	Jump frequency 1 to 3	0: No jump frequency	0 to 400Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. G11S series for the aeration tank blower

 Because the load characteristics of the aeration tank blower (route blower) are nearly the constant torque load characteristics, apply FRENIC5000G11S series.

2. PID control setting values

 The optimum setting values depend on the system due to various combinations such as the blower characteristics and water depth of the aeration tank. Therefore, use empirical values in advance and then reset the values to the optimum values during test operation.

3. Energy saving operation selection considering operation condition

 Great energy saving effect can be realized if the system has enough treatment capacity. Set the energy saving operation (H10) active, and continue operation unless trouble occurs.

4. Precautions on radio interference

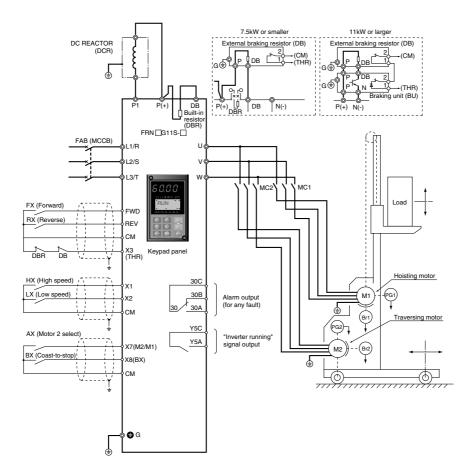
- As many measurement circuits are installed around the aeration tank, precautions need to be taken for radio noise interference.
- FRENIC5000G11S series incorporates measures against radio interference noise generation and a function for switching to a low carrier frequency. However, we recommend that you take the following action:

- Install an isolation transformer for the power supply for the instruments.
- 2) Use shielded wires for the control signals.
- 3) Connect Power filter (FHF-□ / □ / □) on the inverter power supply side.
- 4) Install a ferrite ring for reducing radio noise (ACL-40B or ACL-74B) on the inverter power supply side.
- Perform complete wiring separation or electromagnetic shielding (use metal conduits) for the wiring on the inverter output side.

5. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

6. Suppression of inrush current when the power supply is turned on


• FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

2.2 Using with Multi-storied Automated Warehouses ■ Advantages

- 1. Optimum, individual control of two motors that have different capacities and characteristics using the motor 2/motor 1 selection function
- In multi-storied automated warehouses, one inverter is often used to control the traversing motor and the hoisting motor individually. In this case, the capacity of the hoisting motor is usually larger than that of the traversing motor.
- In the above case, the characteristics constants of motor 1 and that of motor 2 can be set in advance and tuned. The motor 2/motor 1 selection function can be set at any one of the terminal functions (E01 to E09)
- When the terminal set to the motor 2/motor 1 selection function is off, the setting value of motor 1 is enabled. When the terminal is on, the setting value of motor 2 is enabled. Therefore, even if the two motor capacities and characteristics are different, each motor can run under the optimum conditions relative to individual characteristics.

- 2. Improved the stopping accuracy for conveyed items using the slip compensation control function
- The slip compensation control function can be set to maintain stable rotating speed even if the size of the load changes. To improve the stopping accuracy, the conveyance speed is first reduced, then the conveyed item is brought to a standstill at the designated position. The stopping accuracy can be more improved because this function reduces the slip amount in this low speed range.
- 3. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.
- We have succeeded in eliminating most of the unpleasant noise that usually comes from the motor which is driven by the inverter. The inverter, whose sound levels are comparable to those of commercial power sources, contributes to a comfortable working environment.

■ Wiring diagram/System configuration

Function code	Name	Factory setting	Recommended setting value	Remarks	
F10	Electronic thermal relay for motor 1 (Select)	1: Active (Standard motor)	1: Active (Standard motor)		
F11	(Level)	100% of motor rated current	100% rated current of motor used		
F12	(Thermal time constant)	5.0min (22kW or smaller) 10.0min (30kW or larger)	5.0min (22kW or smaller) 10.0min (30kW or larger)	Set if necessary.	
F42	Torque vector control 1	0: Inactive	1: Active		
P01	Motor 1 (No. of poles)	4: 4-pole	2 to 14: 2- to 14-pole	Set according to the motor used.	
P02	(Capacity)	Capacity of motor used	0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger		
P03	(Rated current)	Fuji's standard value	0.00 to 2000A	Set according to be motor used before tuning.	
P04	(Tuning)	0: Inactive	1: Active	Set P04 first, and then P05.	
P05	(On-line tuning)	0: Inactive	1: Active		
P06	(No-load current)	Fuji's standard value	0.00 to 2000A	Values are detected and written	
P07	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during tuning.	
P08	(%X setting)	Fuji's standard value	0.00 to 50.00%		
P09	(Slip compensation control)	Fuji's standard value	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.	
A06	Electronic thermal relay for motor 2 (Select)	1: Active (Standard motor)	1: Active (Standard motor)		
A07	(Level)	100% of motor rated current	100% rated current of motor used		
A08	(Thermal time constant)	5.0min (22kW or smaller) 10.0min (30kW or larger)	5.0min (22kW or smaller) 10.0min (30kW or larger)	Set if necessary.	
A09	Torque vector control 2	0: Inactive	1: Active		
A10	Motor 2 (No. of poles)	4: 4-pole	2 to 14: 2- to 14-pole	Set according to the motor used.	
A11	(Capacity)	Capacity of motor used	0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger		
A12	(Rated current)	Fuji's standard value	0.00 to 2000A	Set according to be motor used before tuning.	
A13	(Tuning)	0: Inactive	1: Active	Set A13 first, and then A14.	
A14	(On-line tuning)	0: Inactive	1: Active		
A15	(No-load current)	Fuji's standard value	0.00 to 2000A	Values are detected and written	
A16	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during tuning.	
A17	(%X setting)	Fuji's standard value	0.00 to 50.00%		
A18	(Slip compensation control)	Fuji's standard value	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.	
E07	X7 terminal (Function select)	6: 3-wire operation stop command	12: motor2/motor1		
H06	Fan stop operation	0: Inactive	1: Active		
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.	
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW or larger inverter.	
F14	Restart mode after momentary power failure (Mode select)	0: Inactive (Trip and alarm when power failure occurs.)	0: Inactive (Trip and alarm when power failure occurs.)	Set H13 to H16 also, if necessary	

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. High torque in the low speed range

• The starting time can be reduced and the stopping accuracy can be improved by reduced motor wow and high torque output in the low speed range.

2. Improved response

- The starting time can be reduced and the stopping accuracy can be improved by reduced motor wow and high torque output in the low speed range.
- Because the response level has been improved, more precise conveyance can be carried out even for highly frequent operations.

3. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard.

• Connect the optional DC REACTOR (DCR __- __ _) to reduce harmonics on power supply side.

4. Suppression of inrush current when the power supply is turned on

• FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

5. Different motor capacities

 Please inquire if the difference in the capacities of motors 1 and 2 exceeds three frames.

2.3 Using with Automated Parking Garages ■ Advantages

1. Optimum, individual control of two motors that have different capacities and characteristics using the motor 2 /motor 1 selection function.

- In automated parking garages, one inverter is often used to control the traversing motor and the hoisting motor individually. In this case, the capacity of the hoisting motor is usually larger than that of the traversing motor.
- In the above case, the characteristics constants of motor 1 and that of motor 2 can be set in advance and tuned. Even if the motor capacities and characteristics are different, each motor can be run under the optimum conditions relative to individual characteristics.

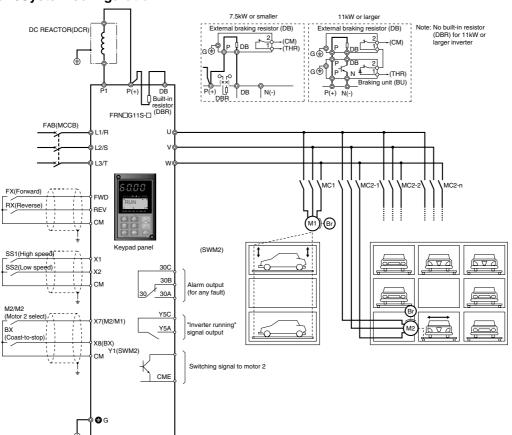
2. Reduced time required to park and unload cars by the shortest acceleration and deceleration time setting.

- A dynamic torque-vector control system is used to achieve the shortest, smoothest acceleration and deceleration times to match the load condition. As a result, compact cars or cars without any loads can be parked in or out more quickly, which shortens the customers' waiting time.
- Till recently, the acceleration and deceleration times have been set taking into consideration the maximum capacity (size of moment of inertia). However, by adopting the

dynamic torque-vector control system, once you set the acceleration and deceleration times for light loads, such as compact cars or cars without any loads in advance, the inverter automatically determines the condition of the cars conveyed and adjusts the acceleration and deceleration times.

3. Overcurrent tripping prevention with the torque limiting function

 When an automated parking garage is used outdoors, small clouds of dust can get inside the guides and rails. This can cause overcurrent tripping during operation. In this case, setting the torque limiting function can avoid overcurrent tripping and continue operation.


4. Communication functions equipped as standard

• Communication function (RS485) is equipped as standard. Integration with a PLC or a personal computer achieves a high grade control.

5. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant noise that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources. The inverter operation won't be a nuisance to adjacent homes in residential areas.

■ Wiring diagram/System configuration

F11 F12 ((F42 Tor P01 Mo P02 P03 P04 P05	(Thermal time constant) orque vector control 1 otor 1 (No. of poles)	10.0min (30kW or larger) 0: Inactive 4: 4-pole Capacity of motor used Fuji's standard value 0: Inactive 0: Inactive Fuji's standard value	1: Active (Standard motor) 100% rated current of motor used 5.0min (22kW or smaller) 10.0min (30kW or larger) 1: Active 2 to 14: 2- to 14-pole 0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger 0.00 to 2000A 1: Active 1: Active 0.00 to 2000A	Set if necessary. Set according to the motor used. Set according to be motor used before tuning. Set P04 first, and then P05. Values are detected and written
F12 (F42 Tor P01 Mo P02 P03 P04 P05	(Level) (Thermal time constant) orque vector control 1 otor 1 (No. of poles) (Capacity) (Rated current) (Tuning) (On-line tuning) (No-load current) (%R1 setting) (%X setting)	5.0min (22kW or smaller) 10.0min (30kW or larger) 0: Inactive 4: 4-pole Capacity of motor used Fuji's standard value 0: Inactive 0: Inactive Fuji's standard value	5.0min (22kW or smaller) 10.0min (30kW or larger) 1: Active 2 to 14: 2- to 14-pole 0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger 0.00 to 2000A 1: Active 1: Active	Set according to the motor used. Set according to be motor used before tuning. Set P04 first, and then P05.
P03 P04 P05	(Thermal time constant) orque vector control 1 otor 1 (No. of poles)	10.0min (30kW or larger) 0: Inactive 4: 4-pole Capacity of motor used Fuji's standard value 0: Inactive 0: Inactive Fuji's standard value	10.0min (30kW or larger) 1: Active 2 to 14: 2- to 14-pole 0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger 0.00 to 2000A 1: Active 1: Active	Set according to the motor used. Set according to be motor used before tuning. Set P04 first, and then P05.
P01 Mo P02 P03 P04 P05	(No. of poles) (Capacity) (Rated current) (Tuning) (On-line tuning) (No-load current) (%R1 setting) (%X setting)	4: 4-pole Capacity of motor used Fuji's standard value 0: Inactive 0: Inactive Fuji's standard value	2 to 14: 2- to 14-pole 0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger 0.00 to 2000A 1: Active 1: Active	Set according to be motor used before tuning. Set P04 first, and then P05.
P02 P03 P04 P05	(Capacity) (Rated current) (Tuning) (On-line tuning) (No-load current) (%R1 setting) (%X setting)	Capacity of motor used Fuji's standard value 0: Inactive 0: Inactive Fuji's standard value	0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger 0.00 to 2000A 1: Active 1: Active	Set according to be motor used before tuning. Set P04 first, and then P05.
P03 P04 P05	(Rated current) (Tuning) (On-line tuning) (No-load current) (%R1 setting) (%X setting)	Fuji's standard value 0: Inactive 0: Inactive Fuji's standard value	0.1 to 500kW: 30kW or larger 0.00 to 2000A 1: Active 1: Active	Set P04 first, and then P05.
P04 P05	(Tuning) (On-line tuning) (No-load current) (%R1 setting) (%X setting)	0: Inactive 0: Inactive Fuji's standard value	1: Active 1: Active	Set P04 first, and then P05.
P05	(On-line tuning) (No-load current) (%R1 setting) (%X setting)	0: Inactive Fuji's standard value	1: Active	
	(No-load current) (%R1 setting) (%X setting)	Fuji's standard value		Values are detected and written
DOC	(%R1 setting) (%X setting)	•	0.00 to 2000A	Values are detected and written
P06	(%X setting)	Fuji's standard value		
P07	` • • •		0.00 to 50.00%	automatically during tuning.
P08		Fuji's standard value	0.00 to 50.00%	
P09 (S	Slip compensation control)	Fuji's standard value	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined .
A06 Elect	ctronic thermal relay for motor 2 (Select)	1: Active (Standard motor)	1: Active (Standard motor)	
A07	(Level)	100% of motor rated current	100% rated current of motor used	
A08	(Thermal time constant)	5.0min (22kW or smaller) 10.0min (30kW or larger)	5.0min (22kW or smaller) 10.0min (30kW or larger)	Set if necessary.
A09 Tor	rque vector control 2	0: Inactive	1: Active	
A10 Mo	otor 2 (No. of poles)	4: 4-pole	2 to 14: 2- to 14-pole	Set according to the motor used.
A11	(Capacity)	Capacity of motor used	0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger	
A12	(Rated current)	Fuji's standard value	0.00 to 2000A	Set according to be motor used before tuning.
A13	(Tuning)	0: Inactive	1: Active	Set A13 first, and then A14.
A14	(On-line tuning)	0: Inactive	1: Active	
A15	(No-load current)	Fuji's standard value	0.00 to 2000A	Values are detected and written
A16	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during tuning.
A17	(%X setting)	Fuji's standard value	0.00 to 50.00%	
A18 (S	Slip compensation control)	Fuji's standard value	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.
E07 X7	terminal (Function select)	6: 3-wire operation stop command	12: motor2/motor1	
H06 Fai	an stop operation	0: Inactive	1: Active	
F26 Mo	otor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15:15kHz (EN)	10: 10kHz	For 75kW or larger inverter.
		1: Inactive (JE) 0: Inactive (EN)	O: Inactive (Trip and alarm when power failure occurs.)	Set H13 to H16 also, if necessary.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. Setting the base frequency to 50Hz

 Setting the base frequency to 50Hz gets the maximum performance out of the standard motor, thereby allowing you to reduce the required acceleration time.

2. Preparing external braking resistor

- For G11 inverter of 7.5kW or smaller, a braking resistor is built into the inverter. However, depending on conditions such as the level of frequent operation or the load amount, an external resistor (DB_-____) having a greater capacity may have to be connected. For 11kW or larger inverter, a braking unit (BU_-___) is required also.
- When the braking resistor is connected externally, be sure to disconnect the jumper wire (P(+), DB) of the built-in braking resistor which has been connected at shipping. In addition, be sure to insulate the disconnected portion.

3. Measures for reducing radio noise

 At locations where radio waves are weak, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B or ACL-75B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

4. Full preparation to suppress harmonics with a DC REACTOR

- An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.
- 5. Suppression of inrush current when the power supply is turned on
- FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on.
- 6. Keypad panel designed with six foreign lanquages as standard
- 1) Standard products: English, German, French, Spanish, Italian, and Japanese
- 2) Manufactured on request: Chinese, English, and Japanese

2.4 Using with Vertical Circulation type Parking Facility ■ Advantages

1. Reduced customer waiting time by high-speed operation for lighter loads using the output torque monitor function

 The output torque monitor function can switch to high-speed operation upon detecting light carrying loads to reduce the customers' waiting time, thereby boosting the utilization rate of the parking facility.

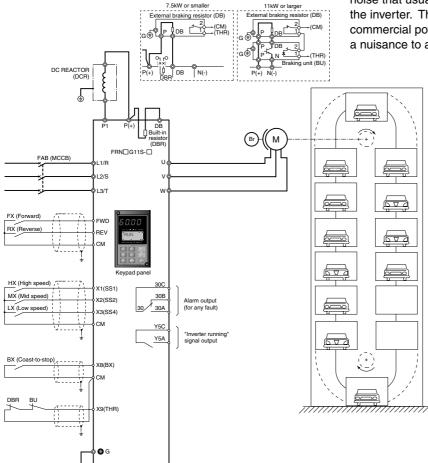
2. Reduced time required to park and unload cars by the shortest acceleration and deceleration time setting

- A dynamic torque-vector control system is used to achieve the shortest, smoothest acceleration and deceleration times to match the load condition. As a result, compact cars or cars without any loads can be parked in or out more quickly, which shortens the customers' waiting time.
- Till recently, the acceleration and deceleration times have been set taking into consideration the maximum capacity (size of moment of inertia). However, once you set the acceleration and deceleration times for light loads, such as compact cars or cars without any loads in advance, the

■ Wiring diagram/System configuration

inverter automatically determines the condition of the cars conveyed and adjusts the acceleration and deceleration times.

3. Rolling and deflection prevention of car loads possible by S-shaped acceleration and deceleration


 Short acceleration and deceleration can be set to reduce the time required to convey cars in and out of the parking facility. However, in linear acceleration and deceleration, acceleration and deceleration can quickly change at starting and stopping, which can result in the crumpling of the car loads. By setting S-shaped acceleration and deceleration, acceleration and deceleration is changed smoothly, thus preventing the crumpling of them.

4. Serial communication functions equipped as standard.

 Serial communication function (RS485) is equipped as standard. Integration with a PLC or a personal computer achieves a high grade control.

Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant noise that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources. The inverter operation won't be a nuisance to adjacent homes in residential areas.

Function code	Name	Factory setting	Recommended setting value	Remarks
F10	Electronic thermal relay for motor 1 (Select)	1: Active (Standard motor)	1: Active (Standard motor)	
F11	(Level)	100% of motor rated current	100% rated current of motor used	
F12	(Thermal time constant)	5.0min (22kW or smaller) 10.0min (30kW or larger)	5.0min (22kW or smaller) 10.0min (30kW or larger)	Set if necessary.
F42	Torque vector control 1	0: Inactive	1: Active	
P01	Motor 1 (No. of poles)	4: 4-pole	2 to 14: 2- to 14-pole	Set according to the motor used.
P02	(Capacity)	Capacity of motor used	0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger	
P03	(Rated current)	Fuji's standard value	0.00 to 2000A	Set according to be motor used before tuning.
P04	(Tuning)	0: Inactive	1: Active	Set P04 first, and then P05.
P05	(On-line tuning)	0: Inactive	1: Active	
P06	(No-load current)	Fuji's standard value	0.00 to 2000A	Values are detected and written
P07	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during tuning.
P08	(%X setting)	Fuji's standard value	0.00 to 50.00%	
P09	(Slip compensation control)	Fuji's standard value	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.
E01	X1 terminal(Function select)	O: Multistep freq. select (1 to 4 bits) [SS1]	O: Multistep freq. select (1 to 4 bits) [SS1]	
E02	X2 terminal	1: Multistep freq. select (1 to 4 bits) [SS2]	1: Multistep freq. select (1 to 4 bits) [SS2]	
E03	X3 terminal	2: Multistep freq. select (1 to 4 bits) [SS4]	2: Multistep freq. select (1 to 4 bits) [SS4]	
E08	X8 terminal	7: Coast-to-stop command [BX]	7: Coast-to-stop command [BX]	
E09	X9 terminal	8: Alarm reset [RST]	9: Trip command (External fault) [THR]	For protecting the external braking resistor, when it is used.
F31	FMA (Function select)	0: Output frequency 1 (Before slip compensation)	4: Output torque	
F35	FMP (Function select)	0: Output frequency 1 (Before slip compensation)	4: Output torque	
H06	Fan stop operation	0: Inactive	1: Active	
H07	ACC/DEC pattern (Mode select)	0: Inactive (Linear)	1: S-curve(weak) 2: S-curve(strong)	Set the function in accordance with the load condition of equipment .
F26	Motor sound	2: 2kHz (JE)	15:15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10:10kHz	For 75kW or larger inverter.
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	O: Inactive (Trip and alarm when power failure occurs.)	Set H13 to H16 also, if necessary.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. Setting the base frequency to 50Hz

- Setting the base frequency to 50Hz gets the maximum performance out of the standard motor, thereby allowing you to reduce the required acceleration time.
- When the load (=car+carried goods) is light, set the operation frequency higher than the base frequency, then the time required to unload cars can be reduced.

2. "Inverter running" (RUN) signal output matching the brake timing

 The brake timing can be adjusted by the setting of operation command self-hold time (H16) during momentary power failure.

3. Preparing external braking resistor

- For G11S inverter of 7.5kW or smaller, a braking resistor is built into the inverter. However, depending on conditions such as the level of frequent operation or the load amount, an external resistor (DB——) having a greater capacity may have to be connected. For 11kW or larger inverter, a braking unit (BU——) is required also.
- When the braking resistor is connected externally, be sure to disconnect the jumper wire (P(+), DB) of the built-in braking resistor which has been connected at shipping. In addition, be sure to insulate the disconnected portion.

4. Measures for reducing radio noise

 This low-noise inverter switches its main circuits at high speed. At locations where radio waves are weak, therefore, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B or ACL-75B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

5. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

6. Suppression of inrush current when the power supply is turned on

• FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

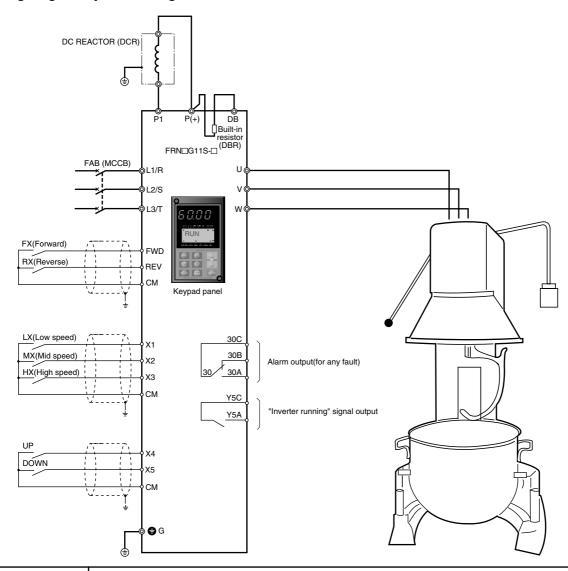
2.5 Using with Bread Dough Mixers ■ Advantages

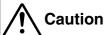
1. Constant speed control of the bread dough mixers using slip compensation control

 By setting the slip compensation amount, constant speed mixing of bread dough can be maintained even if the load amount changes while the dough is being mixed. In addition, the dynamic torque-vector control enables powerful operation even at low speed. Bread dough with good gluten elasticity can be realized for softer, more delicious bread.

2. Serial communication functions equipped as standard

 Serial communication function (RS485) is equipped as standard. Integration with a PLC or a personal computer achieves a high grade control.


■ Wiring diagram/System configuration


3. Superior construction for use in severe environments

• This inverter has a fully enclosed structure IP40 (up to 22kW) as standard. Also available are a water-proof structure IP65 (up to 7.5kW) and IP54 (11 to 22kW) as a separate series (available soon). You can select the inverter that matches your working environment.

Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The inverter, whose sound levels are comparable to those of commercial power sources, contributes to a comfortable working environment.

Function code	Name	Factory setting	Recommended setting value	Remarks
F10	Electronic thermal relay for motor 1	1: Active (Standard motor)	1: Active (Standard motor)	
F11	(Select)	100% of motor rated current	100% rated current of motor used	
F12	(Level) (Thermal time constant)	5.0min (22kW or smaller) 10.0min (30kW or larger)	5.0min (22kW or smaller) 10.0min (30kW or larger)	Set, if necessary.
F42	Torque vector control 1	0: Inactive	1: Active	
E01	X1 terminal (Function select)	O: Multistep freq. select (1 to 4 bits) [SS1]	O: Multistep freq. select (1 to 4 bits) [SS1]	Setting is also available with E06
E02	X2 terminal	1:Multistep freq. select (1 to 4 bits) [SS2]	, . , . ,	to E09.
E03	X3 terminal	2: Multistep freq. select (1 to 4 bits) [SS4]	2: Multistep freq. select (1 to 4 bits) [SS4]	
E04	X4 terminal	3: Multistep freq. select (1 to 4 bits) [SS8]	17: UP command [UP]	
E05	X5 terminal	4: ACC/DEC time selection (1 to 4 bits) [RT1]	18: DOWN command [DOWN]	
P09	Motor 1 (Slip compensation control)	Fuji's standard value	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.
H31	RS485 (Address)	0	1 to 31	Set the value according to your
H32	(Mode select on no response error)	0: Trip and alarm (Er8)	O: Trip and alarm (Er8) O: Operation for H33 timer, and alarm (Er8) O: Operation for H33 timer, and retry to communicate. If the retry fails, then the inverter trips ("Er8") Continuous operation	communication specifications.
H33	(Timer)	2.0s	0.0 to 60.0s	
H34	(Baud rate)	1: 9600 [bit/s]	0 to 4: 19200 to 1200 [bit/s]	
H35	(Data length)	0: 8bit	0: 8bit 1: 7bit	
H36	(Parity check)	0: No checking	0: No checking 1: Even parity 2: Odd parity	
H37	(Stop bits)	0: 2bit	0: 2bit 1: 1bit	
H38	(No response error detection time)	0: (No detection)	0.1 to 60s	
H39	(Response interval)	0.01s	0.00 to 1.00s	
H06	Fan stop operation	0: Inactive	1: Active	
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW or larger inverter.
F14	, ,	1: Inactive (JE) 0: Inactive (EN)	O: Inactive (Trip and alarm when the power failure occurs.)	Set H13 to H16 also, if necessary.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. Remote control using the UP/DOWN functions

 By assigning the UP/DOWN function to the arbitrary two terminals among the control terminals (X1 to X9) in advance, the rotating speed of the mixer can be adjusted using the ▲ and ▼ keys on the operator panel of the mixer in much the same way that you use a television remote control (volume adjustment).

2. PATTERN operation enabled

PATTERN operation can be set in seven stages (stages 1 to 7).
 The operating time (0.00 to 6000 seconds) for each stage, rotating direction (forward or reverse), acceleration and deceleration times, and multistep frequencies (steps 1 to 7) can be set. If the operation pattern has been decided, this function greatly simplifies the configurations of the external circuits and devices.

3. Displays the rotating speed of the beaters digitally on the operator panel of the mixer

A pulse in proportion to the operating frequency is output from the
external output terminal (FMP terminal). Because the pulse count
per this frequency can be set to an arbitrary value (300 p/s to 6000
p/s), a value approximating the rotating speed of the beaters can be
displayed in combination with the exclusive frequency counter. In
addition, by setting the slip compensation amount, the value further
approaches the rotating speed of the beaters.

4. Measures for reducing radio noise

• This low-noise inverter switches its main circuits at high speed. At locations where radio waves are weak, therefore, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B or ACL-75B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

5. Full preparation to suppress harmonics with a DC REACTOR

6. Suppression of inrush current when the power supply is turned on

• FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on.

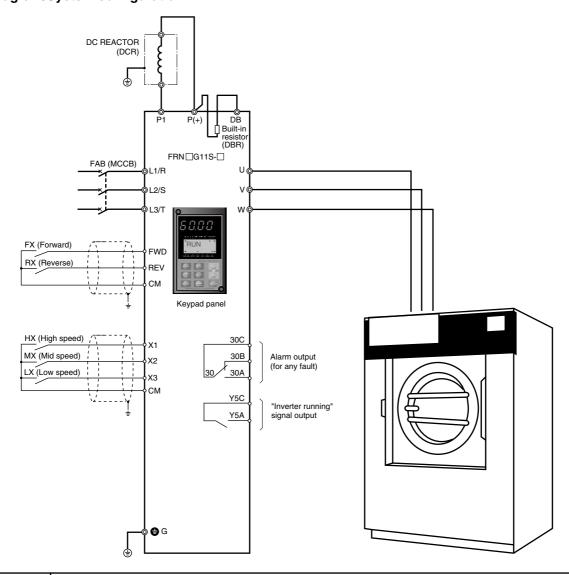
7. Keypad panel designed with six foreign languages as standard

- 3) Standard products: English, German, French, Spanish, Italian, and Japanese
- 4) Manufactured on request: Chinese, English, and Japanese

2.6 Using with Commercial-use Washing Machines ■ Advantages

1. Greatly reduced motor wow of washing machine tubs

• With our unique, new control method, motor wow at low speed has been reduced by more than one half (as compared with a conventional Fuji Inverter).


2. Stable rotating speed with slip compensation control function

 By setting the slip compensation amount, stable rotating speed can be maintained so that both heavy and light washing loads can drop from the topmost section.

3. Smooth starts using a high starting torque of 200%

- Dynamic torque-vector control incorporating leading technologies enables a high starting torque of 200% (at 0.5 Hz).
- 4. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.
- We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources. The inverter meets strict restrictions for motor sound.

■ Wiring diagram/System configuration

Function code	Name	Factory setting	Recommended setting value	Remarks
E01	X1 terminal(Function select)	O: Multistep freq. select (1 to 4 bits) [SS1]	O: Multistep freq. select (1 to 4 bits) [SS1]	Setting is also available with E06
E02	X2 terminal	1: Multistep freq. select (1 to 4 bits) [SS2]	1: Multistep freq. select (1 to 4 bits) [SS2]	to E09.
E03	X3 terminal	2: Multistep freq. select (1 to 4 bits) [SS4]	2: Multistep freq. select (1 to 4 bits) [SS4]	
E04	X4 terminal	3: Multistep freq. select (1 to 4 bits) [SS8]	17: UP command [UP]	
E05	X5 terminal	4: ACC/DEC time selection (1 to 4 bits) [RT1]	18: DOWN command [DOWN]	
F42	Torque vector control 1	0: Inactive	1: Active	
F09	Torque boost 1	0.0: Automatic torque boost	0.0: Automatic torque boost	
H06	Fan stop operation	0: Inactive	1: Active	
E20	Y1 terminal(Function select)	0: Inverter running	25: Fan operation signal	Used to control the inverter panel cooling fans for inverters of 30kW or larger. Also available with Functions E21 to E23 (Y2 to Y4 terminal functions).
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	3: Active (Continuous operation; heavy inertia load, or general load)	Set H13 to H16 also, if necessary.
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW or larger inverter.
E24	Y5A,Y5C terminal function (Relay output)	15: Auxiliary terminal AX (for 52-1)	0: Inverter running (RUN)	Relay output (Y5A, Y5C). On when inverter output is present. (Set if necessary.)
F41	Torque limiter 1 (Braking)	999: No limit (JE) 150:150%(EN: 22kW or smaller) 100:150%(EN: 30kW or larger)	0: Automatic deceleration control	Setting recommended when braking resistor is not used.
C01 to C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. PATTERN operation enabled

PATTERN operation can be set in seven stages (stages 1 to 7). The operating time (0.00 to 6000 seconds) for each stage, rotating direction (forward or reverse), acceleration and deceleration times, and multistep frequencies (steps 1 to 7) can be set. If the operation pattern has been decided, this function greatly simplifies the configurations of the external circuits and devices.

2. Measures for reducing radio noise

• This low-noise inverter switches its main circuits at high speed. At locations where radio waves are weak, therefore, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B or ACL-75B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

3. Full preparation to suppress harmonics with a DC REACTOR

- An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.
- 4. Suppression of inrush current when the power supply is turned on
- FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on.
- 5. Keypad panel designed with six foreign languages as standard
- 1) Standard products: English, German, French, Spanish, Italian, and Japanese
- 2) Manufactured on request: Chinese, English, and Japanese

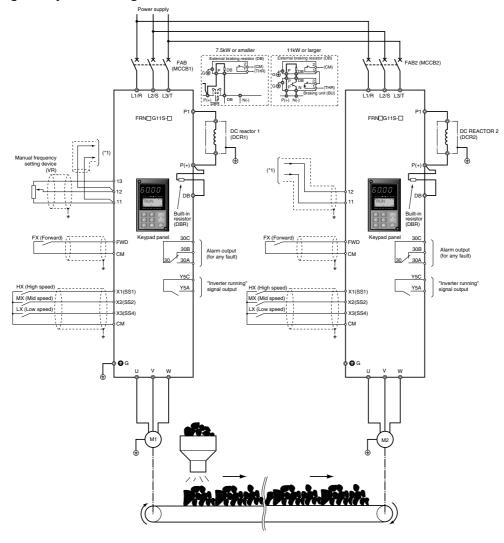
2.7 Using with Belt Conveyors

■ Advantages

1. Smooth starts using a high starting torque of 200%.

- Dynamic torque-vector control incorporating leading technologies enables a high starting torque of 200% (at 0.5 Hz).
- Operation can be started using a high starting torque of 200% even if large-sized item is being loaded. Even if there is a change in the type of item being conveyed, dynamic torque-vector control quickly and flexibly accommodates such change. Consequently, more efficient and continuous operation can be realized without causing a tripping.

2. Droop operation function enabling balanced load operation using two motors for long distance conveyors


 Long distance conveyors transporting heavy items usually have two motors at each end of the conveyor. Smooth operation is difficult due to the unbalance of the load being conveyed.

■ Wiring diagram/System configuration

To eliminate this problem, an inverter is installed for each motor and droop operation is set, enabling optimal operation by maintaining a good load balance between the motors.

3. Highly efficient operation using multistep frequency operation

- Even if the carrying amount varies, the operating frequency can be easily changed using the multistep frequency function. The carrying items can be transported smoothly without stopping the conveyor.
- 4. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.
- We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources. The inverter meets strict restrictions for motor sound.

Function code	Name	Factory setting	Recommended setting value	Remarks
F10	Electronic thermal relay for motor 1 (Select)	1: Active (Standard motor)	1: Active (Standard motor)	
F11	(Level)	100% of motor rated current	100% rated current of motor used	
F12	(Thermal time constant)	5.0min (22kW or smaller) 10.0min (30kW or larger)	5.0min (22kW or smaller) 10.0min (30kW or larger)	Set if necessary.
F42	Torque vector control 1	0: Inactive	1: Active	
P01	Motor 1 (No. of poles)	4: 4-pole	2 to 14: 2- to 14-pole	Set according to the motor used.
P02	(Capacity)	Capacity of motor used	0.1 to 45kW: 22kW or smaller 0.1 to 500kW: 30kW or larger	
P03	(Rated current)	Fuji's standard value	0.00 to 2000A	Set according to be motor used before tuning.
P04	(Tuning)	0: Inactive	1: Active	Set P04 first, and then P05.
P05	(On-line tuning)	0: Inactive	1: Active	
P06	(No-load current)	Fuji's standard value	0.00 to 2000A	Values are detected and written
P07	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during turning.
P08	(%X setting)	Fuji's standard value	0.00 to 50.00%	
P09	(Slip compensation control)	Fuji's standard value	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.
E01	X1 terminal(Function select)	O: Multistep freq. select (1 to 4 bits) [SS1]	O: Multistep freq. select (1 to 4 bits) [SS1]	
E02	X2 terminal	1: Multistep freq. select (1 to 4 bits) [SS2]	1: Multistep freq. select (1 to 4 bits) [SS2]	
E03	X3 terminal	2: Multistep freq. select (1 to 4 bits) [SS4]	2: Multistep freq. select (1 to 4 bits) [SS4]	
E08	X8 terminal	7: Coast-to-stop command [BX]	7: Coast-to-stop command [BX]	
E09	X9 terminal	8: Alarm reset [RST]	9: Trip command (External fault) [THR]	For protecting the external braking resistor, when it is used.
F31	FMA (Function select)	0: Output frequency 1 (Before slip compensation)	4: Output torque	
F35	FMP (Function select)	0: Output frequency 1 (Before slip compensation)	4: Output torque	
H06	Fan stop operation	0: Inactive	1: Active	
H07	ACC/DEC pattern (Mode select)	0: Inactive (Linear)	1: S-curve(weak) 2: S-curve(strong)	Set the function in accordance with the load condition of equipment.
H28	Droop control	-9.9 to 0.0Hz	-9.9 to 0.0Hz	Set at the slave inverter according to the condition of the load to be combined.
F26	Motor sound	2: 2kHz (JE)	15:15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10:10kHz	For 75kW or larger inverter.
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	1: Inactive (Trip and alarm when power recovers.)	Set H13 to H16 also, if necessary.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. Setting the base frequency to 50Hz

 Setting the base frequency to 50Hz gets the maximum performance out of the standard motor, thereby allowing you to reduce the required acceleration time.

2. Preparing external braking resistor

- For G11S inverter of 7.5kW or smaller, a braking resistor is built into the inverter. However, depending on conditions such as the level of frequent operation or the load amount, an external resistor (DB_-) having a greater capacity may have to be connected. For 11kW or larger inverter, a braking unit (BU_-) is required also.
- When the braking resistor is connected externally, be sure to disconnect the jumper wire (P(+), DB) of the built-in braking resistor which has been connected at shipping. In addition, be sure to insulate the disconnected portion.

3. Measures for reducing radio noise

 This low-noise inverter switches its main circuits at high speed. At locations where radio waves are weak, therefore, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B or ACL-75B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

4. Full preparation to suppress harmonics with a DC REACTOR

- An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.
- 5. Suppression of inrush current when the power supply is turned on
- FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

Keypad panel designed with six foreign languages as standard

- 1) Standard products: English, German, French, Spanish, Italian, and Japanese
- 2) Manufactured on request: Chinese, English, and Japanese

2.8 Using with Grinding Machines

■ Advantages

1. Greatly reduced motor wow

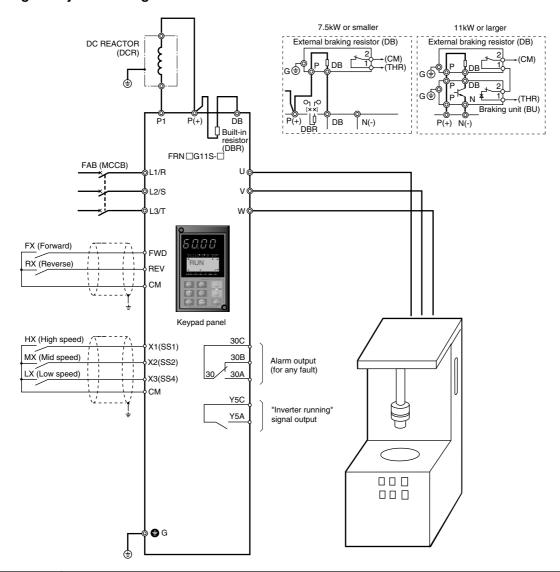
• With our unique, new control method, motor wow at low speed has been reduced by more than one half (as compared with a conventional Fuji Inverter).

2. Slip compensation control function enabling constant speed operation of grinders

 By setting the slip compensation amount, constant grinder rotating speed can be maintained irrespective of whether the grinding amount is large or small.

3. Smooth starts using a high starting torque of 200%

Dynamic torque-vector control incorporating leading technologies enables a high starting torque of 200% (at 0.5 Hz).


4. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter.

The sound levels are comparable to those of commercial power sources.

The inverter meets strict restrictions for motor sound.

■ Wiring diagram/System configuration

Function code	Name	Factory setting	Recommended setting value	Remarks
E01	X1 terminal(Function select)	O: Multistep freq. select (1 to 4 bits) [SS1]	O: Multistep freq. select (1 to 4 bits) [SS1]	Setting is also available with E06
E02	X2 terminal	1: Multistep freq. select (1 to 4 bits) [SS2]	1: Multistep freq. select (1 to 4 bits) [SS2]	to E09.
E03	X3 terminal	2: Multistep freq. select (1 to 4 bits) [SS4]	2: Multistep freq. select (1 to 4 bits) [SS4]	
E04	X4 terminal	3: Multistep freq. select (1 to 4 bits) [SS8]	17: UP command [UP]	
E05	X5 terminal	4: ACC/DEC time selection (1 to 4 bits) [RT1]	18: DOWN command [DOWN]	
F42	Torque vector control 1	0: Inactive	1: Active	
F09	Torque boost 1	0.0: Automatic torque boost	0.0: Automatic torque boost	
H06	Fan stop operation	0: Inactive	1: Active	
É20	Y1 terminal(Function select)	0: Inverter running	25: Fan operation signal	Used to control the inverter panel cooling fans for inverters of 30kW or larger. Also available with Functions E21 to E23 (Y2 to Y4 terminal functions).
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	3: Active (Continuous operation; heavy inertia load, or general load)	Set H13 to H16 also, if necessary.
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW or larger inverter.
E24	Y5A,Y5C terminal function (Relay output)	15: Auxiliary terminal for 52-1 [AX](JE) 10: Ready output [RDY](EN)	0: Inverter running (RUN)	Relay output (Y5A, Y5C). On when inverter output is present. (Set if necessary.)
F41	Torque limiter 1 (Braking)	999: No limit (JE) 150:150%(EN: 22kW or smaller) 100:150%(EN: 30kW or larger)	0: Automatic deceleration control	Setting recommended when braking resistor is not used.
C01 to C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. PATTERN operation enabled

PATTERN operation can be set in seven stages (stages 1 to 7). The operating time (0.00 to 6000 seconds) for each stage, rotating direction (forward or reverse), acceleration and deceleration times, and multistep frequencies (steps 1 to 7) can be set. If the operation pattern has been decided, this function greatly simplifies the configurations of the external circuits and devices.

2. Measures for reducing radio noise

• This low-noise inverter switches its main circuits at high speed. At locations where radio waves are weak, therefore, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B or ACL-75B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

3. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

4. Suppression of inrush current when the power supply is turned on

• FRENIC5000G11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

Keypad panel designed with six foreign languages as standard

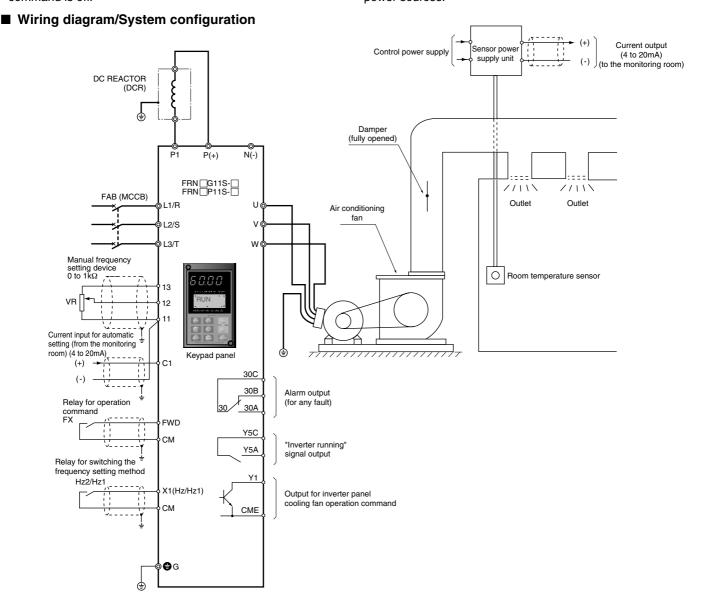
- 1) Standard products : English, German, French, Spanish, Italian, and Japanese
- 2) Manufactured on request: Chinese, English, and Japanese

2.9 Using with Fans for Air Conditioning Unit (1) ■ Advantages

1. A Solution to growing demand for energy savings: Automatic energy saving operation

 Under the energy saving mode, conditions can be set automatically to ensure that the motor runs at peak efficiency. This approach takes into consideration the axial force of fans which frequently changes. This results in minimized power consumption, and satisfies the increasing demand for the greater energy savings.

2. Automatic stopping of the inverter cooling fan while air conditioning system is not in operation


 By selecting cooling fan stop operation, the inverter cooling fan can be stopped when the temperature of the inverter cooling fan becomes low while the inverter operation command is off.

Although energy savings may appear minimal from the point of view of the air conditioning unit itself, the total saving effect that can be realized by the whole air conditioning system is significant. Furthermore, the cooling fan stop operation contributes to a more quiet operation, as the cooling fan operation sound may be a nuisance at night.

Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

• We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter.

The sound levels are comparable to those of commercial power sources.

Function code	Name	Factory setting	Recommended setting value	Remarks
F01	Frequency command 1	0: Keypad panel	2: Current input (terminal C1) (4 to 20mA DC)	Under normal operation
C30	Frequency command 2	0: Keypad panel	0: Keypad panel 1: Voltage input	Under manual operation
E01	X1 terminal (Function select)	0: Multistep freq. select	11: Freq. set. 2 /Freq. set. 1	Also available with Functions E02 to E09 (X2 to X9 terminal functions).
F09	Torque boost 1	O.1: For variable torque load (P11) O.0: For constant torque load (G11)	0.1: For variable torque load	
H10	Energy-saving operation	0: Active (P11) 1: Inactive (G11)	1: Active	
H06	Fan stop operation	0: Inactive	1: Active	
E20	Y1 terminal(Function select)	0: Inverter running	25: Fan operation signal	Used to control the inverter panel cooling fans for inverters of 30kW or larger. Also available with Functions E21 to E23 (Y2 to Y4 terminal functions).
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	3: Active (Continuous operation; heavy inertia load, or general load)	Set H13 to H16 also, if necessary.
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW or larger inverter.
E24	Y5A,Y5C terminal function (Relay output)	15: Auxiliary terminal for 52-1 [AX](JE) 10: Ready output [RDY](EN)	0: Inverter running (RUN)	Relay output (Y5A, Y5C). On when inverter output is present. (Set if necessary.)
F41	Torque limiter 1 (Braking)	999: No limit (JE) 150:150%(EN: 22kW or smaller) 100:150%(EN: 30kW or larger)	0: Automatic deceleration control	Setting recommended when braking resistor is not used.
C01 to C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

Automatic energy saving operation: Ideal for fans and pumps

 You can look forward to significant energy savings simply by using the automatic energy saving operation for loads such as fans and pumps.

2. Automatic on/off operation for the inverter panel cooling fan

- For inverter of 30kW or larger, the on/off signal of the cooling fan can be output externally. This signal can be used to automatically run and stop the cooling fan on the inverter panel. As a result, you can look forward to greater energy savings.
- 3. "Inverter running" signal output using relay output
- E24 (Y5A, Y5C terminal functions) can be used to set the output of the "Inverter running" signal using the relay output.
- 4. Easy switching between automatic and manual setting of the frequency setting signal
- Remote frequency setting (4 to 20mA) and manual frequency setting (setting using the frequency setting POT or Keypad panel) can be switched with ease. This function is useful for the operation confirmation at the installation site if required.

- One arbitrary terminal among the control input terminals X1 to X9 is used for switching. Switching is performed by turning the connected contact on and off. Use E01 (in case of control input terminal X1) to enable this function. When the contact is off, the frequency setting specified by F01 is enabled. When the contact is on, the frequency setting specified by C30 is enabled.
- 5. Full preparation to suppress harmonics with a DC REACTOR
- An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.
- 6. Suppression of inrush current when the power supply is turned on
- FRENIC5000G11S/P11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

2.10 Using with Fans for Air Conditioning Unit (2) ■ Advantages

1. PID control functions built in as standard

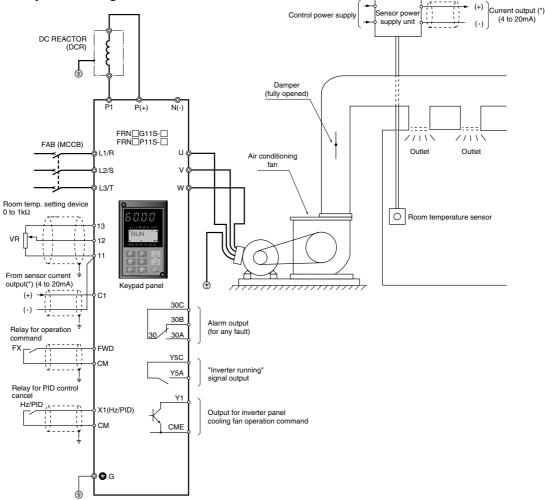
 Till recently, a temperature controller has been required. However, because PID control functions are built in, the room temperature can easily be controlled uniformly by only installing a sensor (4 to 20mA) for detecting the room temperature.

2. A Solution to growing demand for energy savings: Automatic energy saving operation

 Under the energy saving mode, conditions can be set automatically to ensure that the motor runs at peak efficiency. This approach takes into consideration the axial force of fans which frequently changes. This results in minimized power consumption, and satisfies the increasing demand for the greater energy-savings.

3. Automatic stopping of the inverter cooling fan while air conditioning system is not in operation

• By selecting cooling fan stop operation, the inverter cooling


fan can be stopped when the temperature of the inverter cooling fan becomes low while the inverter operation command is off.

Although energy savings may appear minimal from the point
of view of the air conditioning unit itself, the total saving
effect that can be realized by the whole air conditioning
system is significant. Furthermore, the cooling fan stop
operation contributes to a more quiet operation, as the
cooling fan operation sound may be a nuisance at night.

Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources.

■ Wiring diagram/System configuration

Function code	Name	Factory setting	Recommended setting value	Remarks
H20	PID control (Mode select)	0: Inactive	0: Inactive	Operation without PID function is selected.
			1: Active	
H21	(Feedback signal)	1: Terminal C1 (4 to 20mA) input	1: Terminal C1 (4 to 20mA) input	
H22	(P-gain)	0.01: 0.01 times	0.01 times (= 1%) to 10 times (= 1000%)	Set the functions according to
H23	(I-gain)	0.0: Inactive	0.1 to 3600s	individual system.
H24	(D-gain)	0.00: Inactive	0.01 to 10.00s	
H25	(Feedback filter)	0.0: No filter	0.0: No filter	
E01	X1 terminal (Function select)	0: Multistep freq. selection	20: PID control cancel	Manual operation when input signal is ON. (Frequency setting with Keypad panel)
F09	Torque boost 1	0.1: For variable torque load (P11) 0.0: For constant torque load (G11)	0.1: For variable torque load	
H10	Energy-saving operation	0: Active (P11) 1: Inactive (G11)	1: Active	
H06	Fan stop operation	0: Inactive	1: Active	
E20	Y1 terminal(Function select)	0: Inverter running	25: Fan operation signal	Used to control the inverter panel cooling fans for inverters of 30kW or larger. Also available with Functions E21 to E23 (Y2 to Y4 terminal functions).
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	3: Active (Continuous operation; heavy inertia load, or general load)	Set H13 to H16 also, if necessary.
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW or larger inverter.
E24	Y5A,Y5C terminal function (Relay output)	15: Auxiliary terminal for 52-1 [AX](JE) 10: Ready output [RDY](EN)	0: Inverter running (RUN)	Relay output (Y5A, Y5C). On when inverter output is present. (Set if necessary.)
F41	Torque limiter 1 (Braking)	999: No limit (JE) 150: 150%(EN: 22kW or smaller) 100: 100%(EN: 30kW or larger)	0: Automatic deceleration control	Setting recommended when braking resistor is not used.
C01 to C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. PID control setting values

 The optimum setting values depend on the system configuration being used. It varies according to combination of different factors such as the area size to be air conditioned, adiabatic status, and the capacity of the air conditioning equipment. Therefore, use empirical values to set values in advance and then reset the values to the optimum values during test operation.

2. Automatic energy saving operation: Ideal for fans and pumps

 You can look forward to significant energy savings simply by using the automatic energy-saving operation for loads such as fans and pumps.

3. Automatic on/off operation for the inverter panel cooling fan

 For inverters of 30kW or larger, the on/off signal of the cooling fan can be output externally. This signal can be used to automatically run and stop the cooling fan on the inverter panel. As a result, you can look forward to greater energy savings.

4. "Inverter running" signal output using relay output

• E24 (Y5A, Y5C terminal functions) can be used to set the output of the "Inverter running" signal using the relay output.

5. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

6. Suppression of inrush current when the power supply is turned on

• FRENIC5000G11S/P11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

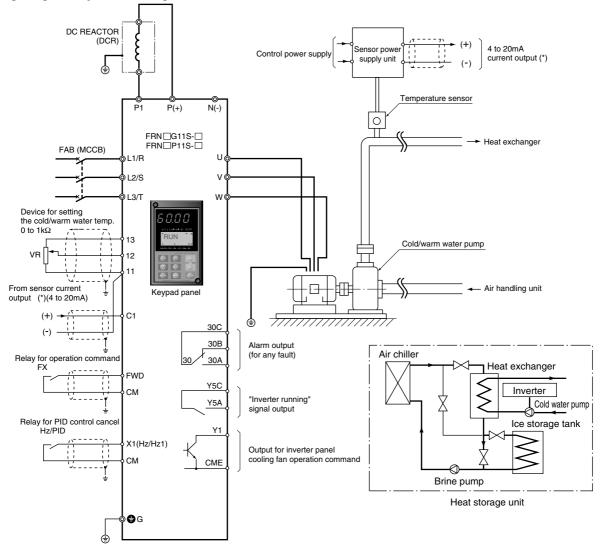
2.11 Using with Cold/Warm Water Pumps ■ Advantages

1. PID control functions built in as standard

- By controlling the cold/warm water temperature of the air handling unit uniformly, the energy savings can be realized in accordance with the reduced amount of pump flow that accommodates changes in the room temperature.
- Till recently, a temperature controller has been required.
 However, because PID control functions are built in as
 inverter functions, the water temperature can be controlled
 uniformly simply by installing a temperature sensor (4 to
 20mA) at the pump outlet.

2. Greater energy saving effect obtainable combined with automatic energy saving operation function

 Normally, the cold/warm water pump has the variable torque characteristics. The axial force of the pump is directly proportional to the rotating speed cubed. If the rotating


- speed (amount of flow) drops to 80%, the axial force will be approximately 50%. As a result, compared with the amount of flow when the flow is restricted by the valve, significant energy savings can be expected.
- Moreover, you can anticipate greater energy savings by setting the automatic energy-saving operation function (Function code: H10) to 1 (Active).

Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

• We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter.

The sound levels are comparable to those of commercial power sources.

■ Wiring diagram/System configuration

Function code	Name	Factory setting	Recommended setting value	Remarks
F04	Base frequency 1	50Hz	50Hz	Change from 50Hz to 60Hz
			60Hz *)1	in 60Hz district.
H20	PID control (Mode select)	0: Inactive	0: Inactive	Operation without PID function is selected.
			1: Active	
H21	(Feedback signal)	1: Terminal C1 (4 to 20mA) input	1: Terminal C1 (4 to 20mA) input	
H22	(P-gain)	0.01: 0.01 times	0.01 times (= 1%) to 10 times (= 1000%)	Set the functions according to
H23	(I-gain)	0.0: Inactive	0.1 to 3600s	individual system.
H24	(D-gain)	0.00: Inactive	0.01 to 10.00s	
H25	(Feedback filter)	0.0: No filter	0.0: No filter	
E01	X1 terminal (Function select)	0: Multistep freq. selection	20: PID control cancel	Manual operation when input signal is ON. (Frequency setting with Keypad panel)
F09	Torque boost 1	O.1: For variable torque load (P11) O.0: For constant torque load (G11)	0.1: For variable torque load	
H10	Energy-saving operation	0: Active (P11) 1: Inactive (G11)	1: Active	
H06	Fan stop operation	0: Inactive	1: Active	
E20	Y1 terminal(Function select)	0: Inverter running	25: Fan operation signal	Used to control the inverter panel cooling fans for inverters of 30kW or larger. Also available with Functions E21 to E23 (Y2 to Y4 terminal functions).
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	3: Active (Continuous operation; heavy inertia load, or general load)	Set H13 to H16 also, if necessary.
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	For 55kW or smaller inverter.
	(Carrier freq.)	15: 15kHz (EN)	10: 10kHz	For 75kW.
			6: 6kHz	For 90 to 280kW inverter.
E24	Y5A,Y5C terminal function (Relay output)	15: Auxiliary terminal for 52-1 [AX](JE) 10: Ready output [RDY](EN)	0: Inverter running (RUN)	Relay output (Y5A, Y5C). On when inverter output is present. (Set if necessary.)
F41	Torque limiter 1 (Braking)	999: No limit (JE) 150: 150%(EN: 22kW or smaller) 100: 100%(EN: 30kW or larger)	0: Automatic deceleration control	Setting recommended when braking resistor is not used.
C01 to C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. PID control setting values

 The optimum setting values depend on the system configuration being used, due to various combinations such as the characteristics of the cold/warm water pump and air conditioning equipment. Therefore, use empirical values to set values in advance and then reset the values to the optimum values during test operation.

2. Energy saving operation selection considering operation condition

 Great energy saving effect can be realized if the system has enough treatment capacity.

3. Precautions on radio interference

- As many measurement circuits are installed around the aeration tank, precautions need to be taken for radio noise interference.
- FRENIC5000G11S series incorporates measures against radio interference noise generation and a function for switching to a low carrier frequency. However, we recommend that you take the following action:

- Install an isolation transformer for the power supply for the instruments.
- 2) Use shielded wires for the control signals.
- 3) Connect Power filter (FHF-□/□/□) on the inverter power supply side.
- 4) Install a ferrite ring for reducing radio noise (ACL-40B or ACL-74B) on the inverter power supply side.
- Perform complete wiring separation or electromagnetic shielding (use metal conduits) for the wiring on the inverter output side.

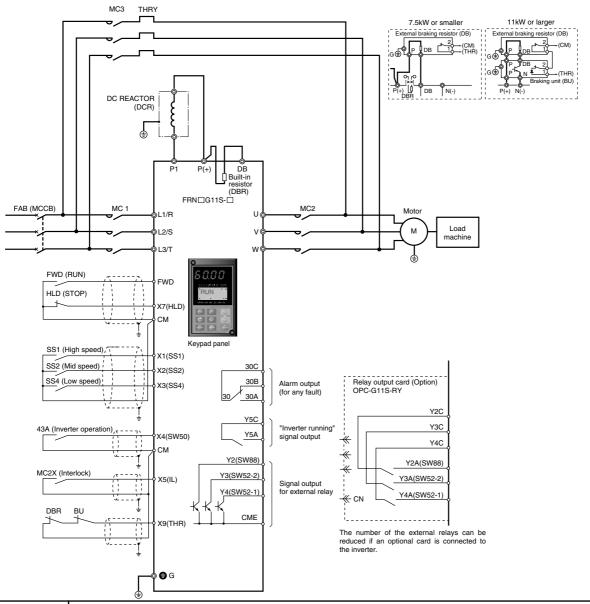
4. Full preparation to suppress harmonics with a DC REACTOR

- An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.
- 5. Suppression of inrush current when the power supply is turned on
- FRENIC5000G11S/P11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on.

2.12 Using with Line/Inverter Changeover Operation ■ Advantages

1. Switching from line operation to inverter operation enabled without stopping the motor

 When switching from line operation to inverter operation, the inverter outputs a frequency equivalent to the rotating speed of the motor. Then the operation can be automatically and smoothly changed to the desired frequency.


2. A built-in timing relay for switching command to the inverter operation circuit

 Proper timing for breaking/closing the magnetic contactor for main circuit switching from line to inverter operation had to be set externally. However, by a switching command relay being built-in the inverter, the circuits can be easily configured including interlock circuits.

3. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources.

■ Wiring diagram/System configuration

■ Function setting value (Recommended: G11S/P11S)

X1 terminal (Function select) O: Multistep freq. select (1 to 4 bits) [SS1] O: Multistep freq. select (1 to 4 bits) [SS1]	For protecting the external braking resistor, when it is used.
E03 X3 terminal 2: Multistep freq. select (1 to 4 bits) [SS4] 2: Multistep freq. select (1 to 4 bits) [SS4] E04 X4 terminal 3: Multistep freq. select (1 to 4 bits) [SS8] 15: Line/Inverter changeover operation (50Hz) [SW50] E05 X5 terminal 4: ACC/DEC time selection (1 to 4 bits) [RT1] 22: Interlock signal for 52-2 [IL E07] X7 terminal 6: 3-wire operation stop command [HLD] 6: 3-wire operation stop command [HLD] E09 X9 terminal 8: Alarm reset [RST] 9: Trip command (External fault) [THR] E21 Y2 terminal(Function select) 1: Frequency equivalence signal [FAR] 11: Line/Inv changeover (for 88) [SW88]	For protecting the external braking resistor, when it is used.
E04 X4 terminal 3: Multistep freq. select (1 to 4 bits) [SS8] 15: Line/Inverter changeover operation (50Hz) [SW50 E05 X5 terminal 4: ACC/DEC time selection (1 to 4 bits) [RT1] 22: Interlock signal for 52-2 [IL E07 X7 terminal 6: 3-wire operation stop command [HLD] 6: 3-wire operation stop command [HLD] E09 X9 terminal 8: Alarm reset [RST] 9: Trip command (External fault) [THR] E21 Y2 terminal(Function select) 1: Frequency equivalence signal [FAR] 11: Line/Inv changeover (for 88) [SW88]	For protecting the external braking resistor, when it is used.
E05 X5 terminal 4: ACC/DEC time selection (1 to 4 bits) RT1 22: Interlock signal for 52-2 [IL E07 X7 terminal 6: 3-wire operation stop command [HLD] 6: 3-wire operation stop command [HLD] E09 X9 terminal 8: Alarm reset [RST] 9: Trip command (External fault) [THR] E21 Y2 terminal(Function select) 1: Frequency equivalence signal [FAR] 11: Line/Inv changeover (for 88) [SW88]	For protecting the external braking resistor, when it is used.
E07 X7 terminal 6: 3-wire operation stop command [HLD] 6: 3-wire operation stop command [HLD] E09 X9 terminal 8: Alarm reset [RST] 9: Trip command (External fault) [THR] E21 Y2 terminal(Function select) 1: Frequency equivalence signal [FAR] 11: Line/Inv changeover (for 88) [SW88]	For protecting the external braking resistor, when it is used.
E09 X9 terminal 8: Alarm reset [RST] 9: Trip command (External fault) [THR E21 Y2 terminal(Function select) 1: Frequency equivalence signal [FAR] 11: Line/Inv changeover (for 88) [SW88]	For protecting the external braking resistor, when it is used.
E21 Y2 terminal(Function select) 1: Frequency equivalence signal [FAR] 11: Line/Inv changeover (for 88) [SW88]	resistor, when it is used.
1 1 1 0 1 1	
Co. Fraguency level detection [FDT] 10. Line /level change ever	
Y3 terminal 2: Frequency level detection [FDT] 12: Line/Inv changeover (for 52-2) [SW52-2	<u>J</u>
Y4 terminal 7: Overload early warning [OL] 13: Line/Inv changeover (for 52-1) [SW52-1	
Y5A,Y5C terminal 15: Auxiliary terminal for 52-1 [AX] (JE) 0: Inverter running 10: Ready output [RDY] (EN)	
Restart mode after momentary power failure (Mode select) 1: Inactive (EN) 0: Inactive (Trip and alarm when power failure occurs.)	Set H13 to H16 also, if necessary.
H13 Auto-restart (Restart time) 0.5s (JE) 0.1s (EN: 22kW or smaller) 0.5s (EN: 30kW or larger) 0.1 to 10.0s	Set the functions according to individual system.
H14 (Freq. fall rate) 10.00Hz/s 0.00 to 100.00Hz/s	
H15 (Holding DC voltage) 400V series: 470V 200V series: 235V 400V series: 400 to 600V 200V series: 200 to 300V	
(OPR command selfhold time) 999: Automatic (Max. time) 0 to 30.0s 999: Automatic (Max. time)	
H06 Fan stop operation 0: Inactive 1: Active	
H07 ACC/DEC pattern (Signature of the pattern (Mode select) 0: Inactive (Linear) 1: S-curve(weak) 2: S-curve(strong)	Set the function in accordance with the load condition of the equipment.
H09 Start mode(Rotating motor pick up) 0: Inactive 2: Active	
F26 Motor sound 2: 2kHz (JE) 15: 15kHz	For 55kW or smaller inverter.
(Carrier freq.) 15: 15kHz (EN) 10: 10kHz	For 75kW.
6: 6kHz	For 90 to 280kW inverter.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. Refer to the basic wiring diagram for the line/inverter changeover operation circuits.

- We have prepared a basic wiring diagram of the line/inverter changeover operation circuits in addition to the system configuration diagram. Refer to the basic wiring diagram when configuring the control circuits.
- To incorporate a line/inverter changeover operation circuit using the switching command timing relay built-in the inverter, the function code and data must be set taking into consideration the function setting value (recommended value) set in advance.
- Reverse operation using the inverter is not possible.

2. Inspection of a forced line operation circuit

- If a fatal fault occurs in the inverter, commands issued by the inverter circuit may not succeed in switching the system to line operation. To execute line operation even in such a condition, we recommend that you prepare a forced line operation circuit separately.
- Please inquire separately for details about a forced line operation circuit.

3. Adjusting the restart waiting time and other items

• Depending on the size of moment of inertia of the load machine, factors such as the restart waiting time and restart frequency fall rate may have to be adjusted.

4. Preparing external braking resistor

• For G11S inverter of 7.5kW or smaller, a braking resistor is built into the inverter. However, depending on conditions such as the level of

- frequent operation or the load amount, an external resistor (DB________) having a greater capacity may have to be connected. For 11kW or larger inverter, a braking unit (BU_________) is required also.
- When the braking resistor is connected externally, be sure to disconnect the jumper wire (P(+), DB) of the built-in braking resistor which has been connected at shipping. In addition, be sure to insulate the disconnected portion.

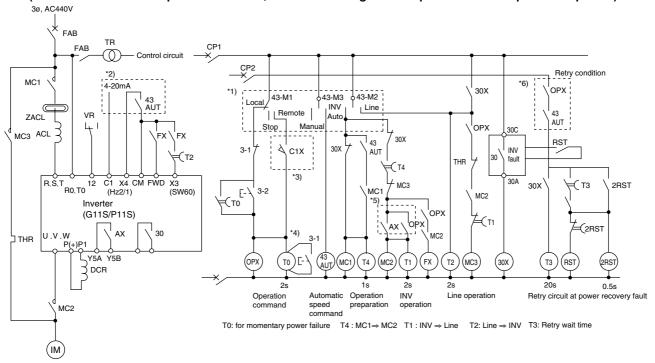
5. Measures for reducing radio noise

This low-noise inverter switches its main circuits at high speed. At
locations where radio waves are weak, therefore, radio noise can
occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B
or ACL-75B) to reduce radio noise, use metal conduits for wiring,
and ground the control panel, motor, and conduits using lower
resistance values.

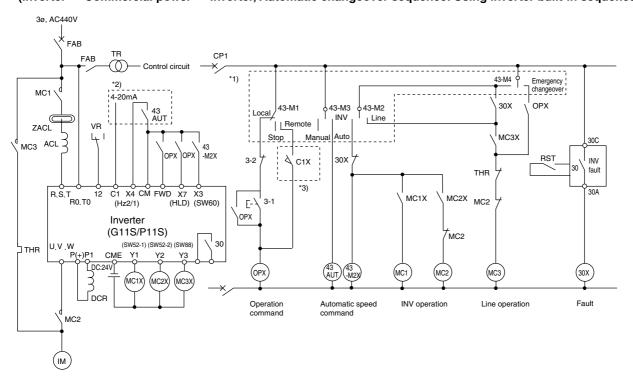
6. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

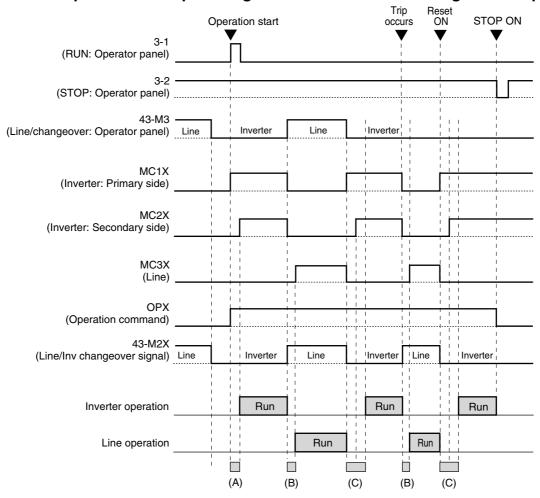
7. Suppression of inrush current when the power supply is turned on


 FRENIC5000G11S/P11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on.

2. FRENIC5000G11S/P11S Series


Line/Inverter changeover sequence

G11S/P11S series inverter is provided with a part of control sequence to changeover between line operation and inverter operation, as standard. This means that external sequence circuit can be more simplified compared with the conventional G9S series. The sequence diagrams below are a conventional G9 compatible sequence and a new sequence utilizing the G11S built-in sequence.


Inverter retry and restart sequence after momentary power failure and power recovery (Example 1) (Inverter → Commercial power → Inverter, Automatic changeover sequence: G9S compatible sequence)

Inverter retry and restart sequence after momentary power failure and power recovery (Example 2) (Inverter → Commercial power → Inverter, Automatic changeover sequence: Using inverter built-in sequence)

Basic operation example using built-in Line/Inverter changeover sequence

- (A) Main circuit chatging time + Contactor closing delay timer (0.2s fixed)
- (B) Restart time after momentary power failure (H13) + Contactor closing delay timer (0.2s fixed)
- (C) Main circuit charging time + Restart time after momentary power failure (H13) + Contactor closing delay timer (0.2s fixed)

Related functions

X1- X9 terminal (Digital input terminal function) ■ E01 X1 terminal function

to

■ E09 X9 terminal function

Se	et alue	Function
	6	3-wire operation stop command [HLD]
	15	Switching operation between line and inverter (50Hz) [SW50]
	16	Switching operation between line and inverter (60Hz) [SW60]

Y1 - Y5C terminal (Transistor output function)

■ E20 Y1 terminal function (Function select)

■ E24 Y5A, Y5C terminal function (Function select)

Set value	Function
11	Line/Inv changeover (for 88) [SW88]
12	Line/Inv changeover (for 52-2) [SW52-2]
13	Line/Inv changeover (for 52-1) [SW52-1]

■ H13 Auto-restart (Restart time)

H13 RESTART

Instantaneous switching to another power line (When the power of an operating motor is cut off or power failure occurs) creates a large phase difference between the line voltage and the voltage remaining in the motor, which may cause electrical or mechanical failure. To rapidly switch power lines, write the remaining voltage attenuation time to wait for the voltage remaining in the motor to attenuate. This function operates at restart after a momentary power failure.

- Setting range: 0.1 to 5.0s

NOTE: *1) Operation switch on control panel

- *2) Use "X4" when current input is used.
- *3) Take countermeasures against momentary power failure for a signal from "REMOTE".
- *4) T0 is an electronic timer with reset terminal.
- *5) AX terminal function is used to make MC2 OFF after deceleration to a stop.
- *6) Retry condition is determined depending on electric facility. The cut-off switch CP2 should be prepared in this circuit.

3. FVR-E11S Series

3. FVR-E11S Series

3.1 Using with Belt Conveyors

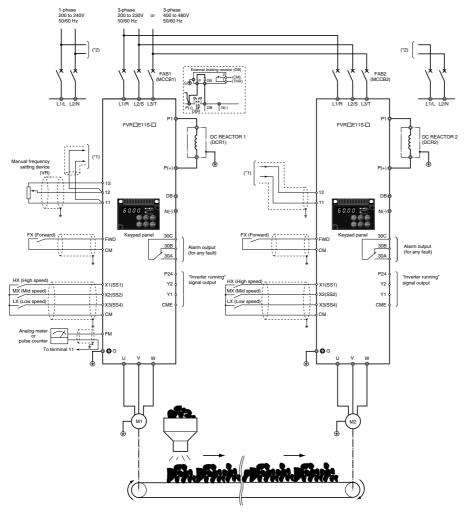
■ Advantages

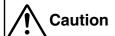
Smooth starts using a high starting torque of 200%.

- Dynamic torque-vector control incorporating leading technologies enables a high starting torque of 200% (at 0.5Hz).
- Operation can be started using a high starting torque of 200% even if large-sized item is being loaded. Even if there is a change in the type of item being conveyed, dynamic torque-vector control quickly and flexibly accommodates such change. Consequently, more efficient and continuous operation can be realized without causing a tripping.

2. Droop operation function enabling balanced load operation using two motors for long distance conveyors

 Long distance conveyors transporting heavy items usually have two motors at each end of the conveyor. Smooth operation is difficult due to the unbalance of the load being conveyed. motor and droop operation is set, enabling optimal operation by maintaining a good load balance between the motors.


3. Highly efficient operation using multistep


To eliminate this problem, an inverter is installed for each

Highly efficient operation using multistep frequency operation

- Even if the carrying amount varies, the operating frequency can be easily changed using the multistep frequency function. The carrying items can be transported smoothly without stopping the conveyor.
- Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.
- We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources. The inverter meets strict restrictions for motor sound.

Wiring diagram/System configuration (Example of JE version)

The information described in this catalog is for the purpose of selecting the appropriate products. Before actually using this product, be sure to read the instruction manual carefully to ensure proper operation.

■ Function setting value (Recommended)

Function code	Name	Factory setting	Recommended setting value	Remarks
F10	Electronic thermal relay for motor 1 (Select)	1: Active (Standard motor)	1: Active (Standard motor)	
F11	(Level)	100% of motor rated current	100% rated current of motor used	
F12	(Thermal time constant)	5.0min	5.0min	Set if necessary.
F42	Torque vector control 1	0: Inactive	1: Active	
P01	Motor 1 (No. of poles)	4: 4-pole	2 to 14: 2- to 14-pole	Set according to the motor used.
P02	(Capacity)	Capacity of motor used	0.1 to 11kW	
P03	(Rated current)	Fuji's standard value	0.00 to 99.9A	Set according to be motor used before tuning.
P04	(Tuning)	0: Inactive	1: Active	Set P04 first, and then P05.
P05	(On-line tuning)	0: Inactive	1: Active	
P06	(No-load current)	Fuji's standard value	0.00 to 99.9A	Values are detected and written
P07	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during tuning.
P08	(%X setting)	Fuji's standard value	0.00 to 50.00%	
P09	(Slip compensation control)	0.00Hz	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.
E01	X1 terminal (Function select)	O: Multistep freq. select (1 to 4 bits) [SS1]	O: Multistep freq. select (1 to 4 bits) [SS1]	
E02	X2 terminal	1: Multistep freq. select (1 to 4 bits) [SS2]	1: Multistep freq. select (1 to 4 bits) [SS2]	
E03	X3 terminal	2: Multistep freq. select (1 to 4 bits) [SS4]	2: Multistep freq. select (1 to 4 bits) [SS4]	
E04	X4 terminal	6: Coast-to-stop command [BX]	6: Coast-to-stop command [BX]	
E05	X5 terminal	7: Alarm reset [RST]	8: Trip command (External fault) [THR]	For protecting the external braking resistor, when it is used.
F29	FMA, FMP terminal	0: Analog output (FMA)	0: Analog output (FMA)	Set if necessary.
	(Select)		1: Pulse output (FMP)	-
F31	FM (Function select)	0: Output frequency 1 (Before slip compensation)	4: Output torque	
F35	FM (Function select)		4: Output torque	
H06	Fan stop operation	0: Inactive	1: Active	
H07	ACC/DEC pattern (Mode select)	0: Inactive (Linear)	1: S-curve(weak) 2: S-curve(strong)	Set the function in accordance with the load condition of equipment.
F26	Motor sound (Carrier freq.)	2: 2kHz (JE) 15: 15kHz (EN)	15:15kHz	
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	1: Inactive (Trip, and alarm when power recovers.)	Set H13, H14 also, if necessary.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, and acceleration/deceleration time should be set.

■ Tips

1. Setting the base frequency to 50Hz

 Setting the base frequency to 50Hz gets the maximum performance out of the standard motor, thereby allowing you to reduce the required acceleration time.

2. Preparing external braking resistor

- For FVR-E11S series, depending on conditions such as the level of frequent operation or the load amount, an external resistor (DB□-□) having a greater capacity may have to be connected.
- When the braking resistor is connected externally, be sure to disconnect the jumper wire (P(+), DB) of the built-in braking resistor which has been connected at shipping. In addition, be sure to insulate the disconnected portion.

3. Measures for reducing radio noise

 This low-noise inverter switches its main circuits at high speed. At locations where radio waves are weak, therefore, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B or ACL-75B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

4. Full preparation to suppress harmonics with a DC REACTOR

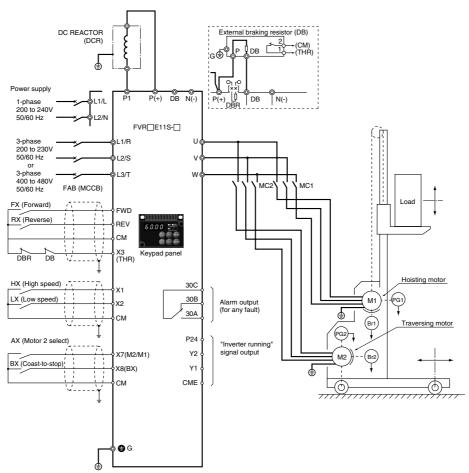
 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

5. Suppression of inrush current when the power supply is turned on

 FVR-E11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

6. Extensive product line

 With wide range of models from 0.1 to 7.5kW, common design inverters can be used in customers machinery or system.


3. FVR-E11S Series

3.2 Using with Multi-storied Automated Warehouses ■ Advantages

- 1. Optimum, individual control of two motors that have different capacities and characteristics using the motor 2/motor 1 selection function
- In multi-storied automated warehouses, one inverter is often used to control the traversing motor and the hoisting motor individually. In this case, the capacity of the hoisting motor is usually larger than that of the traversing motor.
- In the above case, the characteristics constants of motor 1 and that of motor 2 can be set in advance and tuned. The motor 2/motor 1 selection function can be set at any one of the terminal functions (E01 to E05)
- When the terminal set to the motor 2/motor 1 selection function is off, the setting value of motor 1 is enabled. When the terminal is on, the setting value of motor 2 is enabled. Therefore, even if the two motor capacities and characteristics are different, each motor can run under the optimum conditions relative to individual characteristics.

- 2. Improved the stopping accuracy for conveyed items using the slip compensation control function
- The slip compensation control function can be set to maintain stable rotating speed even if the size of the load changes. To improve the stopping accuracy, the conveyance speed is first reduced, then the conveyed item is brought to a standstill at the designated position. The stopping accuracy can be more improved because this function reduces the slip amount in this low speed range.
- 3. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.
- By employing unique vector-distribution PWM control method, we have succeeded in eliminating most of the unpleasant noise that usually comes from the motor which is driven by the inverter. The inverter, whose sound levels are comparable to those of commercial power sources, contributes to a comfortable working environment.

■ Wiring diagram/System configuration (Example of JE version)

The information described in this catalog is for the purpose of selecting the appropriate products. Before actually using this product, be sure to read the instruction manual carefully to ensure proper operation.

■ Function setting value (Recommended)

Function code	Name	Factory setting	Recommended setting value	Remarks
F10		1: Active (Standard motor)	1: Active (Standard motor)	
F11	(Level)	100% of motor rated current	100% rated current of motor used	
F12	(Thermal time constant)	5.0min	5.0min	Set if necessary.
F42	Torque vector control 1	0: Inactive	1: Active	
P01	Motor 1 (No. of poles)		2 to 14: 2- to 14-pole	Set according to the motor used.
P02		Capacity of motor used	0.1 to 11kW	
P03	(Rated current)	Fuji's standard value	0.00 to 99.9A	Set according to be motor used before tuning.
P04	(Tuning)	0: Inactive	1: Active	Set P04 first, and then P05.
P05	(On-line tuning)	0: Inactive	1: Active	
P06	(No-load current)	Fuji's standard value	0.00 to 99.9A	Values are detected and written
P07	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during tuning.
P08	(%X setting)	Fuji's standard value	0.00 to 50.00%	
P09	(Slip compensation control)	0.00Hz	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.
A06	Electronic thermal relay for motor 2 (Select)	1: Active (Standard motor)	1: Active (Standard motor)	
A07	(Level)	100% of motor rated current	100% rated current of motor used	
A08	(Thermal time constant)	5.0min	5.0min	Set if necessary.
A09	Torque vector control 2	0: Inactive	1: Active	
A10	Motor 2 (No. of poles)		2 to 14: 2- to 14-pole	Set according to the motor used.
A11		Capacity of motor used	0.1 to 11kW	
A12	(Rated current)	Fuji's standard value	0.00 to 99.9A	Set according to be motor used before tuning.
A13	(Tuning)	0: Inactive	1: Active	Set A13 first, and then A14.
A14	(On-line tuning)		1: Active	
A15	(No-load current)	Fuji's standard value	0.00 to 99.9A	Values are detected and written
A16	(%R1 setting)	Fuji's standard value	0.00 to 50.00%	automatically during tuning.
A17	(%X setting)	Fuji's standard value	0.00 to 50.00%	
A18	(Slip compensation control)	0.00Hz	0.00 to 5.00Hz	Set the value in accordance with the equipment to be combined.
E03	X3 terminal (Function select)	2: Multistep freq. selection	10: motor2/motor1	
H06	Fan stop operation	0: Inactive	1: Active	For 1.5kW or lager inverter.
F26	Motor sound (Carrier freq.)	2: 2kHz (JE) 15: 15kHz (EN)	15: 15kHz	
F14	Restart mode after momentary power failure (Mode select)	1: Inactive (JE) 0: Inactive (EN)	0: Inactive (Trip and alarm when power failure occurs.)	Set H13, H14 also, if necessary.

Other than the above functions, some of basic functions such as base frequency, maximum frequency, and acceleration/deceleration time should be set for motor 1 and motor 2 individually. The terminal setting of thermal relay for braking resistor is also required.

■ Tips

1. High torque in the low speed range

• The starting time can be reduced and the stopping accuracy can be improved by high torque output in the low speed range.

2. Improved response

 Because the response level has been improved, more precise conveyance can be carried out even for highly frequent operations.

3. Environmentally friendly

- The use of a low-noise control power supply system reduces instances of malfunction of peripheral equipment caused by inverter noise.
- By setting the fan stop operation (H06), while the inverter operation command is off, the inverter cooling fan can be stopped when the temperature of the inverter heat sink becomes low.

4. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

5. Suppression of inrush current when the power supply is turned on

 FVR-E11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

6. Different motor capacities

• Please inquire if the difference in the capacities of motors 1 and 2 exceeds three frames.

7. Extensive product line

 With wide range of models from 0.1 to 7.5kW, common design inverters can be used in customers machinery or system.

3. FVR-E11S Series

3.3 Using with Cold/Warm Water Pumps ■ Advantages

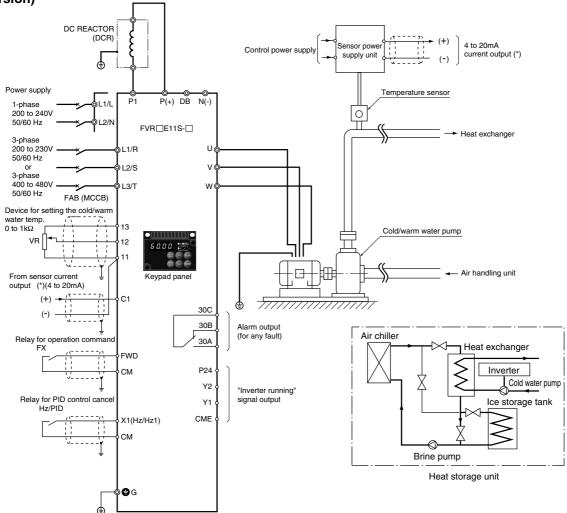
1. PID control functions built in as standard

- By controlling the cold/warm water temperature of the air handling unit uniformly, the energy savings can be realized in accordance with the reduced amount of pump flow that accommodates changes in the room temperature.
- Till recently, a temperature controller has been required.
 However, because PID control functions are built in as
 inverter functions, the water temperature can be controlled
 uniformly simply by installing a temperature sensor (4 to
 20mA) at the pump outlet.

2. Greater energy saving effect obtainable combined with automatic energy saving operation function

 Normally, the cold/warm water pump has the variable torque characteristics. The axial force of the pump is directly proportional to the rotating speed cubed. If the rotating speed (amount of flow) drops to 80%, the axial force will be approximately 50%. As a result, compared with the amount of flow when the flow is restricted by the valve, significant energy savings can be expected.

 Moreover, you can anticipate greater energy savings by setting the automatic energy-saving operation function (Function code: H10) to 1 (Active).


3. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter.

The sound levels are comparable to those of commercial power sources.

The inverter meets strict restrictions for motor sound.

Wiring diagram/System configuration (Example of JE version)

The information described in this catalog is for the purpose of selecting the appropriate products. Before actually using this product, be sure to read the instruction manual carefully to ensure proper operation.

■ Function setting value (Recommended)

Function code	Name	Factory setting	Recommended setting value	Remarks
F04	Base frequency 1	50Hz	50Hz	Change from 50Hz to 60Hz
			60Hz *1)	in 60Hz district.
H20	PID control	0: Inactive	0: Inactive	Operation without PID function is
	(Mode select)			selected.
			1: Active	1
H21	(Feedback signal)	1: Terminal C1 (4 to 20mA) input	1: Terminal C1 (4 to 20mA) input	
H22	(P-gain)	0.10: 0.10 times	0.01 times (= 1%) to 10 times (= 1000%)	Set the functions according to
				individual system.
H23	1 \ 0 /	0.0: Inactive	0.1 to 3600s	
H24	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.00: Inactive	0.1 to 10.00s	
H25	(Feedback filter)	0.5: 0.5s	0.0: No filter	
E01	X1 terminal	0: Multistep freq. selection	20: PID control cancel	Manual operation when input signal is ON.
	(Function select)			(Frequency setting with Keypad panel)
F09	Torque boost 1	0: For constant torque load	0 to 2: For variable torque load	
H10	Energy-saving operation	0: Inactive	1: Active	
H06	Fan stop operation	0: Inactive	1: Active	
F14	Restart mode after	1: Inactive (JE)	2: Active	Set H13, H14 also, if necessary.
	momentary power failure	0: Inactive (EN)	(Restart with the frequency at power	
	(Mode select)		failure)	
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	
	(Carrier freq.)	15: 15kHz (EN)		
E20	Y1 terminal	0: Inverter running	0: Inverter running	
	(Function select)		_	
F41	Torque limiter 1	999: No limit (JE)	0: Automatic deceleration control	Setting recommended when
	(Braking)	150: 150% (EN)		braking resistor is not used.
C01-C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. PID control setting values

 The optimum setting values depend on the system configuration being used, due to various combinations such as the characteristics of the cold/warm water pump and air conditioning equipment. Therefore, use empirical values to set values in advance and then reset the values to the optimum values during test operation.

2. Energy saving operation selection considering operation condition

 Great energy saving effect can be realized if the system has enough treatment capacity.

3. Precautions on radio interference

- As many measurement circuits are installed around the aeration tank, precautions need to be taken for radio noise interference.
- FMR-E11S series incorporates measures against radio interference noise generation and a function for switching to a low carrier frequency. However, we recommend that you take the following action:
- Install an isolation transformer for the power supply for the instruments.
- 2) Use shielded wires for the control signals.

- 3) Connect Power filter (FHF-□/□/□) on the inverter power supply side.
- 4) Install a ferrite ring for reducing radio noise (ACL-40B or ACL-74B) on the inverter power supply side.
- 5) Perform complete wiring separation or electromagnetic shielding (use metal conduits) for the wiring on the inverter output side.

4. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

5. Suppression of inrush current when the power supply is turned on

 FVR-E11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

6. Extensive product line

 With wide range of models from 0.1 to 7.5kW, common design inverters can be used in customers machinery or system.

3. FVR-E11S Series

3.4 Using with Fans for Air Conditioning Unit (1)

■ Advantages

1. A Solution to growing demand for energy savings: Automatic energy saving operation

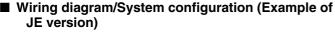
 Under the energy saving mode, conditions can be set automatically to ensure that the motor runs at peak efficiency. This approach takes into consideration the axial force of fans which frequently changes. This results in minimized power consumption, and satisfies the increasing demand for the greater energy savings.

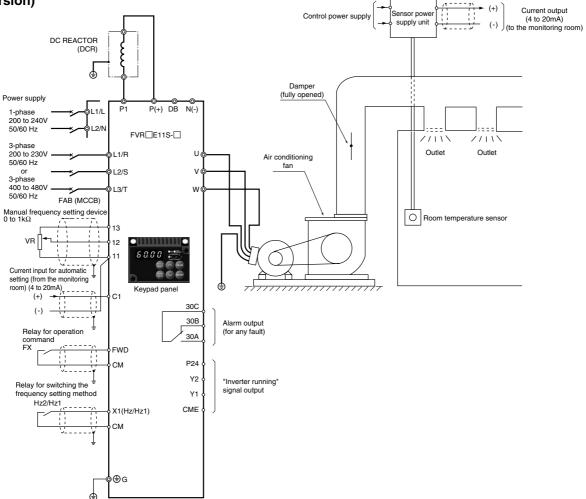
2. Automatic stopping of the inverter cooling fan while air conditioning system is not in operation

- By selecting cooling fan stop operation, the inverter cooling fan can be stopped when the temperature of the inverter cooling fan becomes low while the inverter operation command is off.
- Although energy savings may appear minimal from the point of view of the air conditioning unit itself, the total saving effect that can be realized by the whole air conditioning system is

significant. Furthermore, the cooling fan stop operation contributes to a more quiet operation, as the cooling fan operation sound may be a nuisance at night.

3. Serial communication functions equipped as standard


 Serial communication function (RS485) is equipped as standard. Integration with a PLC or a personal computer achieves a high grade control.


Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter.

The sound levels are comparable to those of commercial power sources.

The inverter meets strict restrictions for motor sound.

The information described in this catalog is for the purpose of selecting the appropriate products. Before actually using this product, be sure to read the instruction manual carefully to ensure proper operation.

■ Function setting value (Recommended)

Function code	Name	Factory setting	Recommended setting value	Remarks
F01	Frequency command 1	0: Keypad panel	2: Current input (terminal C1) (4 to 20mA DC)	Under normal operation
C30	Frequency command 2	2: Current input (terminal C1)	0: Keypad panel 1: Voltage input	Under manual operation
E01	X1 terminal (Function select)	0: Multistep freq. select	11: Freq. set. 2 /Freq. set. 1	Also available with Functions E02 to E05 (X2 to X5 terminal functions).
F09	Torque boost 1	0: For constant torque load	0 to 2: For variable torque load	
H10	Energy-saving operation	0: Inactive	1: Active	
H06	Fan stop operation	0: Inactive	1: Active	
F14	Restart mode after	1: Inactive (JE)	2: Active	Set H13, H14 also, if necessary.
	momentary power failure (Mode select)	0: Inactive (EN)	(Restart with the frequency at power failure)	
F26	Motor sound (Carrier freq.)	2: 2kHz (JE) 15: 15kHz (EN)	15: 15kHz	
E20	Y1 terminal (Function select)	0: Inverter running	0: Inverter running	
F41	Torque limiter 1	999: No limit (JE)	0: Automatic deceleration control	Setting recommended when
	(Braking)	150:150%(EN)		braking resistor is not used.
C01-C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. Automatic energy saving operation: Ideal for fans and pumps

 You can look forward to significant energy savings simply by using the automatic energy saving operation for loads such as fans and pumps.

2. Easy switching between automatic and manual setting of the frequency setting signal

- Remote frequency setting (4 to 20mA) and manual frequency setting (setting using the frequency setting POT or Keypad panel) can be switched with ease. This function is useful for the operation confirmation at the installation site if required.
- One arbitrary terminal among the control input terminals X1 to X5 is used for switching. Switching is performed by turning the connected contact on and off. Use E01 (in case of control input terminal X1) to enable this function. When the contact is off, the frequency setting specified by F01 is enabled. When the contact is on, the frequency setting specified by C30 is enabled.

3. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

4. Suppression of inrush current when the power supply is turned on

 FVR-E11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

5. Extensive product line

 With wide range of models from 0.1 to 7.5kW, common design inverters can be used in customers machinery or system.

3. FVR-E11S Series

3.5 Using with Fans for Air Conditioning Unit (2) ■ Advantages

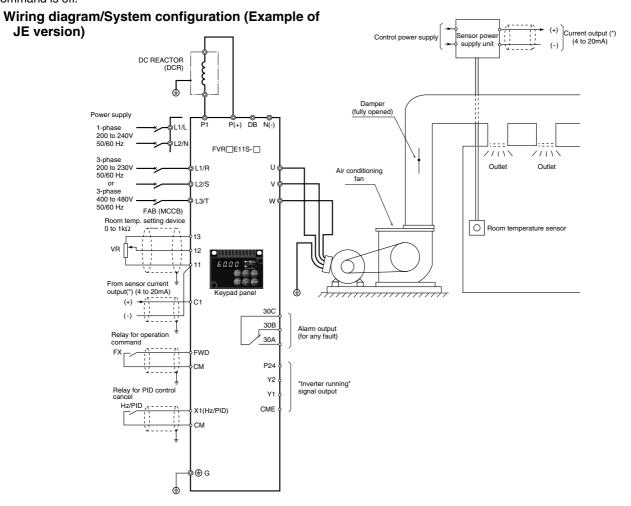
1. PID control functions built in as standard

Till recently, a temperature controller has been required.
 However, because PID control functions are built in, the room temperature can easily be controlled uniformly by only installing a sensor (4 to 20mA) for detecting the room temperature.

2. A Solution to growing demand for energy savings: Automatic energy saving operation

 Under the energy saving mode, conditions can be set automatically to ensure that the motor runs at peak efficiency.
 This approach takes into consideration the axial force of fans which frequently changes. This results in minimized power consumption, and satisfies the increasing demand for the greater energy-savings.

3. Automatic stopping of the inverter cooling fan while air conditioning system is not in operation


 By selecting cooling fan stop operation, the inverter cooling fan can be stopped when the temperature of the inverter cooling fan becomes low while the inverter operation command is off. Although energy savings may appear minimal from the point
of view of the air conditioning unit itself, the total saving effect
that can be realized by the whole air conditioning system is
significant. Furthermore, the cooling fan stop operation
contributes to a more quiet operation, as the cooling fan
operation sound may be a nuisance at night.

4. Serial communication functions equipped as standard

 Serial communication function (RS485) is equipped as standard. Integration with a PLC or a personal computer achieves a high grade control.

5. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.

 We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources. The inverter meets strict restrictions for motor sound.

The information described in this catalog is for the purpose of selecting the appropriate products. Before actually using this product, be sure to read the instruction manual carefully to ensure proper operation.

■ Function setting value (Recommended)

Function code	Name	Factory setting	Recommended setting value	Remarks
H20	PID control	0: Inactive	0: Inactive	Operation without PID function is
	(Mode select)			selected
			1: Active	
H21	(Feedback signal)	1: Terminal C1 (4 to 20mA) input	1: Terminal C1 (4 to 20mA) input	
H22	(P-gain)	0.10: 0.10 times	0.01 times (= 1%) to 10 times (= 1000%)	Set the functions according to individual system.
H23	(I-gain)	0.0: Inactive	0.1 to 3600s	1
H24	(D-gain)	0.00: Inactive	0.1 to 10.00s	1
H25	(Feedback filter)	0.5: 0.5s	0.0: No filter	1
E01	X1 terminal	0: Multistep freq. selection	20: PID control cancel	Manual operation when input signal is ON.
	(Function select)			(Frequency setting with Keypad panel)
F09	Torque boost 1	0: For constant torque load	0 to 2: For variable torque load	
H10	Energy-saving operation	0: Inactive	1: Active	
H06	Fan stop operation	0: Inactive	1: Active	
F14	Restart mode after	1: Inactive (JE)	2: Active	Set H13, H14 also, if necessary.
	momentary power failure	0: Inactive (EN)	(Restart with the frequency at power	
	(Mode select)		failure)	
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	
	(Carrier freq.)	15: 15kHz (EN)		
E20	Y1 terminal	0: Inverter running	0: Inverter running	
	(Function select)			
F41	Torque limiter 1	999: No limit (JE)	0: Automatic deceleration control	Setting recommended when
	(Braking)	150: 150% (EN)		braking resistor is not used.
C01-C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. PID control setting values

• The optimum setting values depend on the system configuration being used. It varies according to combination of different factors such as the area size to be air conditioned, adiabatic status, and the capacity of the air conditioning equipment. Therefore, use empirical values to set values in advance and then reset the values to the optimum values during test operation.

2. Automatic energy saving operation: Ideal for fans and pumps

 You can look forward to significant energy savings simply by using the automatic energy-saving operation for loads such as fans and pumps.

3. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

4. Suppression of inrush current when the power supply is turned on

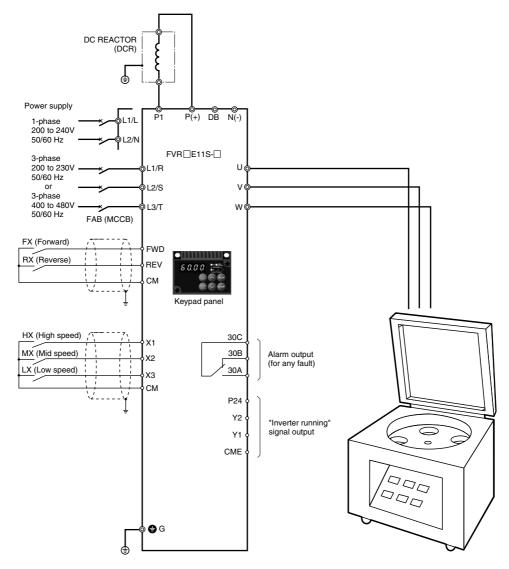
 FVR-E11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

5. Extensive product line

 With wide range of models from 0.1 to 7.5kW, common design inverters can be used in customers machinery or system.

3. FVR-E11S Series

3.6 Using with Centrifugal Separators and Spin Dryers


■ Advantages

- 1. Stable rotating speed with slip compensation control function
- By setting the slip compensation amount, stable rotating speed can be maintained.
- 2. Smooth starts using a high starting torque of 200%
- Dynamic torque-vector control incorporating leading technologies enables a high starting torque of 200% (at 0.5 Hz).
- 3. Unnecessary to resort to any special soundproofing measures; Fuji inverter drives a motor with silent motor sound.
- We have succeeded in eliminating most of the unpleasant motor sound that usually comes from the motor which is driven by the inverter. The sound levels are comparable to those of commercial power sources. The inverter meets strict restrictions for motor sound.

4. Acc/dec time setting up to 3600s

 Acceleration and deceleration times can be set within a range of 0.01 to 3600s.

■ Wiring diagram/System configuration (Example of JE version)

The information described in this catalog is for the purpose of selecting the appropriate products. Before actually using this product, be sure to read the instruction manual carefully to ensure proper operation.

■ Function setting value (Recommended)

Function code	Name	Factory setting	Recommended setting value	Remarks
E01	X1 terminal (Function select)	0: Multistep freq. select (1 to 4 bits) [SS1]	0: Multistep freq. select (1 to 4 bits) [SS1]	
E02	X2 terminal	1: Multistep freq. select (1 to 4 bits) [SS2]	1: Multistep freq. select (1 to 4 bits) [SS2]	
E03	X3 terminal	2: Multistep freq. select (1 to 4 bits) [SS4]	2: Multistep freq. select (1 to 4 bits) [SS4]	
E04	X4 terminal	6: Coast-to-stop command [BX]	8: Trip command [THR]	For protecting the external broking
				resistor, when it is used.
E05	X5 terminal	7: Alarm reset [RST]	14: DOWN command [DOWN]	
F42	Torque vector control 1	0: Inactive	1: Active	
F09	Torque boost 1	0: For constant torque load	0: For constant torque load	
H06	Fan stop operation	0: Inactive	1: Active	
F14	Restart mode after	1: Inactive (JE)	3: Active	Set H13, H14 also, if necessary.
	momentary power failure	0: Inactive (EN)	(Continuous operation; heavy inertia	
	(Mode select)		load, or general load)	
F26	Motor sound	2: 2kHz (JE)	15: 15kHz	
	(Carrier freq.)	15: 15kHz (EN)		
E20	Y1 terminal (Function select)	0: Inverter running	0: Inverter running	
F41	Torque limiter 1	999: No limit (JE)	0: Automatic deceleration control	Setting recommended when
	(Braking)	150:150% (EN)		braking resistor is not used.
C01-C03	Jump frequency 1 to 3	0: No jump frequency	0 to 120Hz	Set the value in accordance with
C04	(Hysteresis)	3: 3Hz	0 to 30Hz	the equipment to be combined.

Other than the above functions, some of the basic functions such as base frequency, maximum frequency, acceleration/deceleration time, and motor characteristics parameters should be set.

■ Tips

1. PATTERN operation enabled

 PATTERN operation can be set in one stage (stage 1). The operating time (0.01 to 3600 seconds) can be set. If the operation pattern has been decided, this function greatly simplifies the configurations of the external circuits and devices.

2. Measures for reducing radio noise

• This low-noise inverter switches its main circuits at high speed. At locations where radio waves are weak, therefore, radio noise can occur due to the effect of the wiring on the load side. We recommend that you install a ferrite ring for reducing radio noise (ACL-40B) to reduce radio noise, use metal conduits for wiring, and ground the control panel, motor, and conduits using lower resistance values.

3. Full preparation to suppress harmonics with a DC REACTOR

 An exclusive terminal (P1, P(+)) for connecting a DC REACTOR is equipped as standard. Connect the optional DC REACTOR (DCR□-□□□) to reduce harmonics on power supply side.

4. Suppression of inrush current when the power supply is turned on

 FVR-E11S series inverters have a built-in circuit that suppresses inrush current that are generated when the power supply is turned on. No measures have to be taken to handle inrush current in particular.

5. Preparing external braking resistor

- For FVR-E11S series, depending on conditions such as the level of frequent operation or the load amount, an external resistor (DB-□□) having a greater capacity may have to be connected.
- When the braking resistor is connected externally, be sure to disconnect the jumper wire (P(+), DB) of the built-in braking resistor which has been connected at shipping. In addition, be sure to insulate the disconnected portion.

Chapter 7 Glossary

Contents

1.	Standard Specifications7-2
2.	Common Specifications7-4

Chapter 7

1. Standard Specifications

This part contains the definitions of the terms used in this engineering documentation.

1. Standard Specifications

Nominal applied motor

The rated output of a general-purpose motor, stated in kW, that is used as a standard motor.

Rated capacity

The rating of an output capacity, or the apparent power that is represented by the rated output voltage times the rated output current, which is calculated by solving the following equation and is stated in kVA:

Rated Rated capacity [kVA] =
$$\sqrt{3}x$$
 output [V] x output [A] x 10⁻³ voltage current

The rated output voltage is assumed to be 220V for 200V-class equipment and 440V for 400V-class equipment.

Rated output voltage

A fundamental wave rms equivalent of the voltage that is generated across the output terminal when the AC input voltage (supply voltage) and frequency meet their rated conditions and the output frequency of the inverter equals the base frequency.

Rated output current

A total rms equivalent of the current that flows through the output terminal under the rated input and output conditions (the output voltage, current, frequency, and load factor meet their rated conditions). Essentially, equipment rated at 200V covers the current of a 50Hz 6-pole motor and equipment rated at 400V covers the current of a 50Hz 4-pole motor.

Overload capability

The overload current that an inverter can tolerate, expressed as a percentage of the rated output current and also as a permissible energization time.

• Voltage / frequency variations

Variations in the input voltage or frequency within permissible limits. Variations outside these limits might cause an inverter or motor failure.

Voltage unbalance

A condition of an AC input voltage (supply voltage) that states the voltage balance of each phase in an expression as:

$$\begin{array}{l} \mbox{Voltage} \\ \mbox{unbalance} \ [\%] = \ \frac{\mbox{Maximum voltage [V] - Minimum voltage [V]}}{\mbox{Three-phase average voltage [V]}} \ x \ 67 \\ \end{array}$$

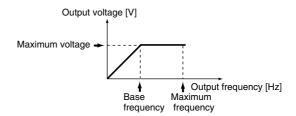
(Conforming EN61800-3 (5.2.3))

• Required power supply capacity

The capacity required of a power supply for an inverter. This is calculated by solving either of the following equations and is stated in kVA:

Required power supply capacity
$$[kVA] = \sqrt{3} \times 200 \times Input \ rms \ current \\ (200V, 50Hz)$$
 or
$$= \sqrt{3} \times 220 \times Input \ rms \ current \\ (220V, 60Hz)$$
 Required power supply capacity
$$[kVA] = \sqrt{3} \times 400 \times Input \ rms \ current \\ (400V, 50Hz)$$
 or
$$= \sqrt{3} \times 440 \times Input \ rms \ current \\ (440V, 60 Hz)$$

• Momentary voltage dip capability


The minimum voltage [V] and time [ms] that permit continued rotation after a momentary voltage drop (instantaneous power failure).

• Maximum output frequency

The output frequency in the wake of the input of the maximum value of a frequency setup signal (for example, 10V for a voltage input range of 0 to 10V or 20mA for a current input range of 4 to 20mA).

Base frequency

The frequency at which an inverter delivers a constant voltage in the output V/F pattern.

Starting frequency

The minimum frequency at which an inverter starts its output (not the frequency at which a motor starts rotating).

Carrier frequency

The frequency used to modulate a modulated frequency to establish a pulse width under the PWM control system. The higher the carrier frequency, the closer the inverter output current approaches a sinusoidal waveform and the quieter the motor becomes.

• Frequency accuracy (stability)

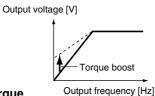
The percentage of variations in output frequency to a predefined maximum frequency, which is primarily influenced by ambient temperature.

• Frequency resolution

The minimum step, or increment, in which output frequency is varied, rather than continuously.

• Voltage/frequency characteristic

A characteristic representative of the variations in output voltage (V), and relative to variations in output frequency (f). To achieve efficient motor rotation, the voltage/frequency characteristic helps produce a motor torque matching the torque characteristics of a load.

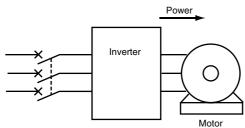

1. Standard Specifications

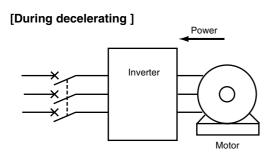
AVR control

A facility that keeps an output voltage constant regardless of variations in the input supply voltage or load.

Torque boost

If a general-purpose motor is run with an inverter, voltage drops would have a pronounced effect in a low-frequency region, reducing the motor output torque to a level significantly lower than that available if the motor would be run from a commercial power supply. In a low-frequency range, therefore, to minimize the loss of the motor output torque, it is necessary to increase the voltage to compensate for voltage drops. This process of voltage compensation is called torque boost.


Starting torque


The torque that a motor produces when it starts (or the power with which the motor can run a load).

Braking torque

Torque that works in a direction that will stop a motor from rotating (or the power that is required to stop the motor).

[During accelerating or running at constant speed]

If the time for decelerating an inverter is set shorter than the natural stopping time for a load machine, the motor works as a generator when it decelerates, causing the kinetic energy of the load to be converted to electric energy that is returned to the inverter from the motor. If this power (regenerative power) is consumed by the inverter, the motor generates a braking force called "braking torque."

DC injection braking

An inverter cuts its output at an output frequency of 0.2 Hz when the motor decelerates. If a load having a large moment of inertia is stopped or the motor is decelerated abruptly, however, the speed of the motor might not be fully reduced when the inverter reaches the output frequency of 0.2 Hz. Rather, inertial force would keep the motor rotating even after the inverter output has been cut. If the motor must be stopped completely, DC injection braking should be selected to cause DC current to flow through the motor to stop it completely.

Protective structures

Protective structures of inverters as defined in IEC60529 "Degrees of protection provided by enclosures (IP Code)."

Chapter 7

2. Common Specifications

2. Common Specifications

V/f control

The rotating speed N of a motor can be stated in an expression as

$$N = \frac{-120f}{p} \quad \text{(1-s)} \qquad [r/\text{min}]$$
 f: Input frequency

p: Number of poles

s: Slippage

On the basis of this expression, varying the input frequency varies the speed of the motor. However, simply varying the input frequency (f) would result in an overheated motor or would not allow the motor to demonstrate its optimum utility if the input voltage (V) remains constant. For this reason, the input voltage (V) must be varied with the input frequency (f) by using an inverter. This scheme of control is called V/f control.

Dynamic torque-vector control

Calculation of the output matched to the status of a load at high speed to maximize the torque of the motor so as to optimize the current and voltage vectors. Dynamic torquevector control calculates faster than previous methods of torque-vector control, providing a greater degree of control.

Vector control with PG

Used to achieve positioning with greater accuracy.

KEYPAD operation

To use a keypad panel to run an inverter.

• External potentiometer

A variable resistor (optional) that is used to set frequencies.

Analog input

Used to set frequencies with external current and voltage input.

• Reversible operation

An inverter can be made to go forward or in reverse according to the polarity of an externally supplied voltage.

Polarity	FWD	REV
+	Forward	Reverse
_	Reverse	Forward

Inverse operation

To invert an analog input signal.

Example:

0 to +10Vdc/0 to max. output frequency [Hz]

→ +10 to 0Vdc/0 to max. output frequency [Hz]

4 to 20mAdc/0 to max. output frequency [Hz]

→ 20 to 4mAdc/0 to max. output frequency [Hz]

• Multistep frequency selection

To preset frequencies (up to 16 stages), then select them at some later time.

• 12-bit parallel signals (12-bit binary)

A variation of inverter control signals.

• T-link

Fuii Electric's exclusive in-house linkage system used to control inverters by way of communications.

Open bus

The following are some of the communications protocols used outside Japan.

- Profibus-DP
- Interbus-S
- Devicenet
- Modbus Plus

JPCN1

This is a communications protocol used in Japan.

Pattern operation

An operation consisting of iterative cycles of running seven different stages (stages 1 to 7) in sequence.

Jogging operation

An extraordinary mode of operation in which a motor is made to go forward or in reverse at a frequency lower than usually.

• Transistor output

A control signal that generates predefined data from within an inverter via a transistor (open collector).

Relay output

• Relay output multipurpose signal

A signal that is output via NO contact. The same data item as a transistor output can be generated.

• Batch alarm output/Alarm output (for any fault)

A no-voltage contact signal (1SPDT) that is generated by an inverter when it is halted by an alarm.

Analog output

See the definition of terminal functions.

Pulse output

See the definition of terminal functions.

Bias frequency

The frequency set with an analog input frequency plus a bias frequency are combined to produce an output frequency.

• Gain (for frequency setting)

A frequency setting gain enables varying the slope of the output of the frequency set with an analog input frequency.

Jump frequencies

Normally, the frequency of inverter output is continuous. However, output can become discontinuous within certain frequency ranges, called jump frequencies.

Pick-up operation

An operation that smoothly initiates an inverter operation sequence without shutting down the motor even though the fan or other component is rotating under the influence of natural phenomena such as wind.

Line/Inverter switching operation

A built-in circuit in an inverter that switches between commercial and inverter operations.

Slip compensation control

A mode of control in which the output frequency of an inverter plus an amount of slip compensation is used as an actual output frequency to compensate for motor slippage.

Torque limiting

A mode of control in which a limit value is set for the torque so the frequency is varied to hold the torque within that value.

Droop control


A mode of control in which a balance is maintained between two motors used to drive a single load by using a negative amount of slip compensation.

Two concurrently running motors never have identical load factors because they have their own specific mechanical variations. The difference in load factors produces motor slippage, causing them to run at different speeds in an unbalanced manner.

As a result, either a motor could have a greater load than the other or could run erratically.

To control this phenomenon, the speed of either motor (for example, motor 1) is set higher than the other motor (motor 2), and inverter 1 is set to provide a negative amount of slip compensation (droop).

Whichever motor having the higher rpm (motor 1) will slip because it has a greater load factor than the other. Further, the negative amount of slip compensation adds to the slow-down of the motor, so that motor 1 will ultimately run at an rpm that is well-balanced with motor 2, in terms of load.

PID control

The scheme of control that brings controlled objects to a desired value quickly and accurately, and which consists of three categories of action: proportional, integral and derivative. Proportional action: Minimizes errors from a set point. Integral action: Resets errors from a desired value to 0.

Automatic deceleration

A mode of control in which deceleration time is automatically extended to prevent the inverter from tripping due to an overvoltage where a braking resistor is not used.

Fan stop operation

A mode of control in which the cooling fan is shut down (where inverter is shut down) if the internal temperature in the inverter is low when no operation command is issued.

Motor synchronous speed

Number of revolutions per minute [r/min] of a motor is stated in an expression as:

$$N = \frac{120f}{p} [r/min]$$

f: Inverter output frequency [Hz]

p: Number of poles of the motor (4 at factory setting)

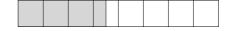
Line speed

Number of revolutions per minute [r/min] of a line load, such as a conveyor.

Load shaft speed

Number of revolutions per minute [r/min] of a rotating load, such as a fan.

• Trip


In response to an overvoltage, overcurrent, or any other unusual condition, actuation of an inverter's protective circuit to cut off the inverter output.

• Alarm

On an inverter, a coded indication of the cause of an interruption in the inverter output (inverter shut-down caused by a trip).

• Bar graph

A graphic representation of the output frequency, output current, and output torque of an inverter on its LCD screen.

Electronic thermal overload relay

To safeguard a motor, calculations made within an inverter based on internal data about the characteristics of the motor.

• PTC thermistor

Type of thermistor designed to safeguard a motor.

Stal

Although expected to stop, an inverter fails to produce the required torque due to a trip, such as one caused by overcurrent.

Chapter 7

2. Common Specifications

Tuning

A facility for implementing optimized control of a motor manufactured by other than Fuji Electric. Tuning deserves special notice for situations where there is a difference of three or more frames between the inverter and the motor.

On-line tuning

Constant detection and calculation of motor constants to provide optimized control.

Stopping frequency

The output frequency at which an inverter cuts its output.

• S-curve acceleration/deceleration (weak)

See Function H07 ACC/DEC pattern in Sections 3, Chapter 2.

• S-curve acceleration/deceleration (strong)

See Function H07 ACC/DEC pattern in Sections 3, Chapter 2.

• Curved acceleration/deceleration (squared torque)

See Function H07 ACC/DEC pattern in Sections 3, Chapter 2.

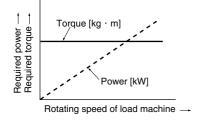
• Reverse phase sequence lock

Function to prevent a motor from accidentally reversing as a result of an unintended KEYPAD operation or external input.

Coast-to-stop

If inverter output is cut while a motor is rotating, the motor continues rotating due to inertial force. This state is called coast-to-stop.

• Thermal time constant

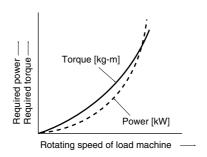

A detailed electronic thermal setting adjusted to meet the characteristics of a motor not manufactured by Fuji Electric.

Constant torque load

A constant torque load is characterized by:

- A requirement for an essentially constant torque, regardless of changes in the number of revolutions per minute.
- ② A power requirement that decreases in proportion to decreases in the number of revolutions per minute.

Examples: Conveyors, elevators, transport machines

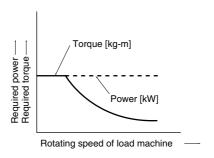

• Squared torque load (Square law speed torque load)

A squared torque load is characterized by:

- ① A change in the required torque in proportion to the square of the number of revolutions per minute.
- ② A power requirement that decreases in proportion to the cube of decreases in the number of revolutions per minute.

Required power [kW] = $\frac{\text{Rotating speed [r/min] x Torque [N·m]}}{9.55}$

Examples: Fans, pumps



Constant output load

A constant output load is characterized by:

- ① An increase in the required torque in inverse proportion to a decrease in the number of revolutions per minute
- 2 An essentially constant power requirement

Example: Machine tool spindle

Contents

Appendix 1. Advantageous Use of Inverters (with regard to Electrical Noise)	8-2
1.1 Effect of inverters on other devices	8-2
1.1.1 Effect on AM radios	8-2
1.1.2 Effect on telephones	8-2
1.1.3 Effect on proximity limit switches	
1.1.4 Effect on pressure sensors	8-2
1.1.5 Effect on position detectors	
(pulse generators; PGs, or pulse encoders)	
1.2 Noise	
1.2.1 Inverter noise	
1.2.2 Types of noise	8-3
1.3 Noise prevention measures	
1.3.1 Noise prevention treatments prior to installation	
1.3.2 Implementation of noise prevention measures	
1.3.3 Specific examples	8-8
Appendix 2. Effect on Insulation of General-purpose	
Motor Driven with 400V Class Inverter	. 8-11
2.1 Operating principle of inverter	. 8-11
2.1.1 Main circuit configuration of inverter	
2.1.2 Control method of inverter	
2.2 Generating mechanism of surge voltages	
2.3 Effect of surge voltages	
2.4 Countermeasures against surge voltages	
2.4.1 Method to use motors with enhanced insulation	
2.4.2 Method to suppress surge voltages	
2.5 Regarding existing equipment	
2.5.1 In case of motor being driven with 400V class inverter	
2.5.2 In case of existing motor driven newly with 400V class inverter	. 8-13
Appendix 3. Example Calculation of Energy Savings	. 8-14
2.1 Calculating condition	. 8-14
2.2 Calculation of shaft driving power	
2.3 Calculation of energy savings	. 8-14
Appendix 4. Inverter Generating Loss	. 8-15

Chapter 8

Appendix 1. Advantageous Use of Inverters (with regard to Electrical Noise)

Excerpt from Technical Document of the Japan Electrical Manufacturers' Association (JEMA) (April, 1994)

Appendix 1. Advantageous Use of Inverters (with regard to Electrical Noise)

1.1 Effect of inverters on other devices

This paper describes the effect that inverters, for which the field of applications is expanding, have on electronic devices already installed and on devices installed in the same system as the inverters. Measures to counter these effects are also introduced. (Refer to 1.3.3 Specific examples for further details.)

1.1.1 Effect on AM radios

- (1) When operating an inverter, nearby AM radios may pickup noise from the inverter. (The inverter has almost no effect on FM radios or televisions)
- (2) It is considered that radios receive noise radiated from the inverter.
- (3) Measures to provide a noise filter on the power supply side of the inverter are effective.

1.1.2 Effect on telephones

- (1) When operating an inverter, telephones may pickup noise during a conversation, making it difficult to hear.
- (2) It is considered that a high-frequency leakage current radiated from the inverter and motors enters shielded telephone cables.
- (3) It is effective to commonly connect the grounding terminals of the motors and return the common grounding line to the grounding terminal of the inverter.

1.1.3 Effect on proximity limit switches

- (1) When operating an inverter, proximity limit switches (capacitance-type) may malfunction.
- (2) It is considered that malfunction occurs because the capacitance-type proximity limit switches have inferior noise immunity.
- (3) Connecting a filter to the input terminals of the inverter or changing the power supply treatment of the proximity limit switches is effective. In addition, the proximity limit switches can be changed to superior noise immunity types such as the magnetic type.

1.1.4 Effect on pressure sensors

- (1) When operating an inverter, pressure sensors may malfunction.
- (2) It is considered that malfunction occurs because noise penetrates through a grounding wire into the signal line.
- (3) It is effective to install a noise filter on the power supply side of the inverter or to change the wiring.

1.1.5 Effect on position detectors (pulse generators; PGs, or pulse encoders)

- (1) When operating an inverter, erroneous pulses from pulse converters may shift the stop position of a machine.
- (2) Erroneous pulses are liable to occur when the signal lines of the PG and power lines are bundled together.
- (3) The influence of induction noise and radiation noise can be reduced by separating the signal lines of the PG and power lines. Providing noise filters at the input and output terminals is also an effective measure.

1.2 Noise

A summary of the noise generated in inverters and its effect on devices susceptible to noise is described below.

1.2.1 Inverter noise

Figure 1 shows an outline of the inverter configuration. The inverter converts AC to DC (rectification) in a converter unit, and converts DC to AC (inversion) with 3-phase variable voltage and variable frequency. The conversion (inversion) is performed by PWM implemented by switching 6 transistors, and is used for variable speed motor control.

Switching noise is generated by the high-speed on/off switching of the 6 transistors. Noise current (i) is emitted and at each high-speed on/off switching the noise current flows through stray capacitance (C) of the inverter, cable and motor to the ground. The amount of the noise current,

 $I = C \cdot dv/dt$

is related to the stray capacitance (C) and dv/dt (switching speed of the transistors). Further, this noise current is related to the carrier frequency since the noise current flows each time the transistors are switched on/off.

The frequency band of this noise is less than approximately 30 to 40MHz. Therefore, devices such as AM radios that use the low frequency band are affected by the noise, but FM radios and television using higher frequency than this frequency band are virtually unaffected.

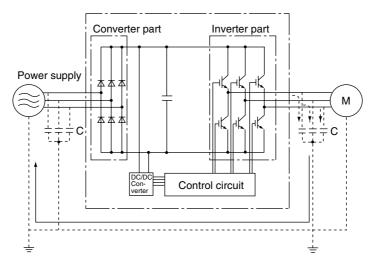


Fig. 1 Outline of inverter configuration

1.2.2 Types of noise

The noise generated in the inverter is propagated through the main circuit wiring to the power supply and the motor, and effects a wide range from the power supply transformer to the motor.

The various propagation routes are shown in Fig. 2, but these are roughly classified into 3 routes of conduction noise, induction noise and radiation noise.

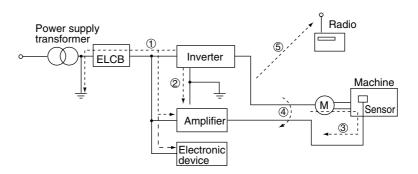


Fig. 2 Noise propagation routes

(1) Conduction noise

Conduction noise is generated in the inverter, propagates through the conductor and power supply, and effects peripheral devices of the inverter (Fig. 3) Some conduction noise ① propagates through the main circuit. If the ground lines are connected with a common connection, there is conduction through route ②. There is also noise ③ through the signal line and shielded wire.

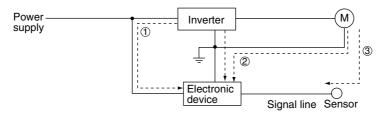


Fig. 3 Conduction noise

(2) Induction noise

When the wire and signal lines of peripheral devices are brought close to the wires on the input and output sides of the inverter, noise is induced in the wire and signal lines of the devices by electromagnetic induction (Fig. 4) and electrostatic induction (Fig. 5). This is induction noise ④.

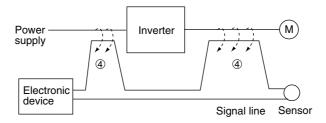


Fig. 4 Electromagnetic noise

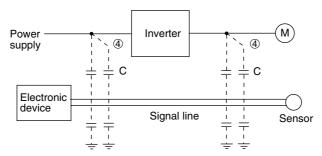


Fig. 5 Electrostatic noise

(3) Radiation noise

Noise generated in the inverter is radiated through the air from antennas consisting of wires at the input and output sides of the inverter. This noise is radiation noise (5) (Fig. 6). The antennas that emit radiation noise are not limited only to wires, the motor frame and panel containing the inverter may also act as antennas.

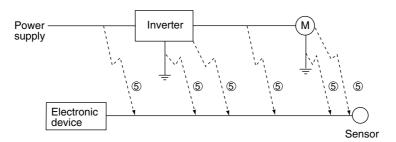


Fig. 6 Radiation noise

1.3 Noise prevention measures

As noise prevention measures are strengthened, they become more effective. With the use of appropriate measures, noise problems may be resolved simply. Therefore, it is necessary to implement economical noise prevention measures according to the noise level and the equipment condition.

1.3.1 Noise prevention treatments prior to installation

Before inserting an inverter in a control panel or installing an inverter panel, it is necessary to consider the noise. Once noise problems occur, great expenditures of apparatuses, materials and time are required.

Noise prevention treatments prior to installation are listed below.

- (1) Separation of the wiring of the main circuit and control circuit
- 2 Insertion of the main circuit wiring into a metal pipe (conduit pipe)
- 3 Use of shielded wire or twisted shielded wire in the control circuit.
- 4 Implementation of appropriate grounding work and grounding wiring.

These treatments can avoid most noise problems.

1.3.2 Implementation of noise prevention measures

There are two types of noise prevention measures, those that correspond to the propagation route and those that counteract the effect of noise on the receiving side (side that is adversely affected by the noise).

The basic measure to lessen the effect of noise on the receiving side is to:

① Separate the main circuit wiring from the control circuit wiring, making it more difficult to receive noise.

The basic measures to lessen the effect of noise on the generating side are to:

- 2 Install a noise filter to reduce the noise level.
- 3 Apply a metal conduit pipe or metal control panel to confine the noise level, and
- Apply an insulated transformer for the power supply to cut off the noise propagation route.

Table 1 lists the methods for preventing the noise problems, their goals and the propagation routes.

Next, noise prevention measures are presented for the inverter drive configuration.

(1) Wiring and grounding

Separating the main circuit and control circuit as much as possible, both inside and outside the control panel, and the use of shielded wire and twisted shielded wire, makes it more difficult to receive noise and allows wiring distances to be minimized (refer to Fig. 7). Take notice that the wiring of the main circuit and control circuit does not become bundled or parallel wiring.

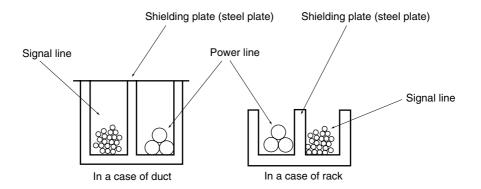
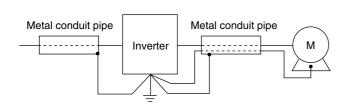



Fig. 7 Method of separating wiring

For the main circuit wiring, a metal conduit pipe is used and grounded through a grounding wiring to prevent noise propagation (refer to Fig. 8).

The shield (braided wire) of the shielded wire is securely connected to the base (common) side of the signal line at only one point to avoid the loop formation resulting from a multi-point connection (refer to Fig. 9).

The grounding is effective to not only to reduce the risk of electric shocks, but also to block noise penetration and radiation. Corresponding to the main circuit voltage, the grounding work should be No. 3 grounding work (300V AC or less) and special No. 3 grounding work (300 to 600V AC). Each ground wire is to be provided with its own ground or separately wired to a grounding point.

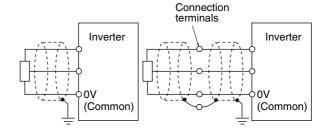


Fig. 8 Grounding of metal conduit pipe

Fig. 9 Treatment of braided wire of shielded wire

Table 1 Noise prevention methods

			Goal of noise prevention measure				Conduction route		
Noise prevention method			Cutoff noise conduction	Confine noise	Reduce noise level	Conduction noise	Induction noise	Radiation noise	
Wiring and	Separate main circuit and control circuit	0					0		
installation	Minimum wiring distance	0			0		0	0	
	Avoid parallel and bundled wiring	0					0		
	Use appropriate grounding	0			0	0	0		
	Use shielded wire and twisted shielded wire	0					0	0	
	Use shielded cable in main circuit			0			0	0	
	Use metal conduit pipe			0			0	0	
Control panel	Appropriate arrangement of devices in panel	0					0	0	
	Metal control panel			0			0	0	
Anti-noise device	Line filter	0			0	0		0	
	Insulation transformer		0			0		0	
Treatment on the	Use passing capacitor	0					0	0	
noise receiving	Use ferrite core for control circuit	0			0		0	0	
side	Line filter	0		0		0			
Others	Separate power supply systems		0			0			
	Lower the carrier frequency				Δ	0	0	0	

(2) Control panel

The control panel containing the inverter is generally made of metal, and this metal box can shield noise radiated from the inverter itself.

Further, when installing other electronic devices such as a programmable logic controller in the same control panel, attention should be paid to the arrangement of each device. When necessary, a noise prevention measure should be implemented, such as installing a shielding plate between the inverter and peripheral devices.

(3) Anti-noise devices

To reduce the noise propagated through the electrical circuits and the noise radiated from the main circuit wiring to the air, a line filter and power supply transformer are utilized (refer to Fig 10).

Among line filters, there are the simple type filters, such as a capacitive filter connected in parallel to the power supply line and an inductive filter connected in series to the power supply line, as well as orthodox filters (LC filters). These filters are used according to the targeted effect for reducing noise. In power supply transformers, there are common insulated transformers, shielded transformers, noise-cut transformers, etc. These transformers have different effectiveness in blocking noise propagation.

(4) Noise prevention measures on the receiving side

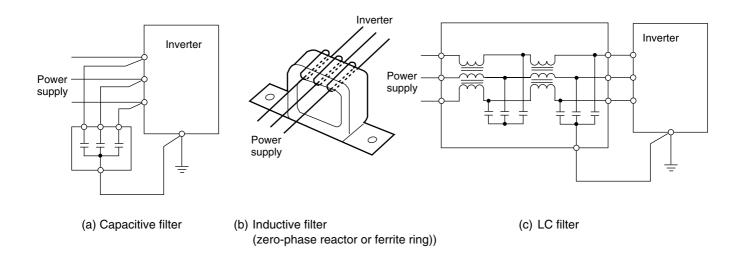


Fig. 10 Various filters and their connection methods

It is important to strengthen the noise immunity of those electronic devices installed in the same control panel as the inverter and/or located near the inverter.

Line filters and shielded or twisted shielded wire is used to block the penetration of noise in the signal lines of these devices. The following treatments are also implemented.

- ① The circuit impedance is lowered by connecting capacitors or resistors to the input and output terminals of the signal circuit in parallel.
- ② The circuit impedance for noise is increased by inserting choke coils in series in the signal circuit, or, passing the signal through ferrite core beads.

It is also effective to widen the signal base line (0 V line) or grounding line.

(5) Other

The generating (propagating) level of noise changes with the carrier frequency of the inverter, the higher the carrier frequency, the higher the generated level of noise.

In the case of an inverter for which the carrier frequency can be changed, lowering the carrier frequency can reduce the generation of electrical noise and result in a good balance with the audible noise of the motor under driving conditions.

1.3.3 Specific examples

Table 2 lists specific examples of the measures to prevent noise generated by operation of the inverter.

Table 2 Specific examples of noise prevention measures

No	Target device	Phonomona	Noise provention measures			
No.	Target device	Phenomena	Noise prevention measures	Notes		
1	AM radio	When operating an inverter, noise entered into AM radio broadcast (500 to 1500kHz). Power supply AM radio	Install an LC filter on the power supply side of the inverter. (A simple method is to install a capacitive filter. Install a metal conduit wiring between the motor and inverter. Power LC filter LC	The radiation noise of the wiring is reduced. The conduction noise to the power supply side is reduced. Further, shielded wiring is used. Note: Sufficient improvement may not be expected in narrow regions such as between mountains.		
		It is considered that the AM radio receives noise radiated from wires at the power supply and output sides of the inverter.	Note: Minimize the distance between the LC filter and inverter as much as possible (within 1m).			
2	AM radio	When operating an inverter, noise entered into AM radio broadcast (500 to 1500kHz). Pole transformer Radio Radio	Install inductive filters at the input and output sides of the inverter. Be short Supply Inductive filter (Ferrite ring) The number of turns of the zerophase reactor (or ferrite ring) should be as large as possible. Further, wiring between the inverter and the zero-phase reactor (or ferrite ring) should be short as possible. (within 1m) When further improvement is necessary, install LC filters.	①The radiation noise of the wiring is reduced.		
3	Telephone (in a common private residence at a distance of 40m)	When driving a ventilation fan with an inverter, noise entered a telephone in a private residence at a distance of 40m. Pole transformer Pole transformer A high-frequency leakage current from the inverter and motor flowed to grounded part of the telephone cable shield. During the current's return trip, it flowed through a grounded pole transformer, and noise entered the telephone by electrostatic induction.	1 Connect the ground terminals of the motors in a common connection. Return to the inverter panel, and insert a 1μF capacitor between the input terminal of the inverter and ground.	1) The effect of the inductive filter and LC filter may not be expected because of sound frequency component. 2) In the case of a V-connection power supply transformer in a 200V system, it is necessary to connect capacitors as shown in the following figure, because of different potentials to the ground.		

No.	Target device	Phenomena	Noise prevention measures Notes				
4	Photoelectric relay	A photoelectric relay malfunctioned when the inverter was operated. [The inverter and motor are installed in the same place (for overhead traveling)] Power supply line Photoelectric relay part of photoelectric relay (24V) Panel on the ground	 ① As a temporary measure, insert a 0.1μF capacitor between the 0 V terminal of the power supply circuit in the detection unit of the overhead photoelectric relay and a frame of the overhead panel. ② As a permanent measure, move the 24V power supply from the ground to the overhead unit so that signals are sent to the ground side with relay contacts in the ceiling part. 	①The wiring is separated. (by more than 30cm.) ②When separation is impossible, signals can be received and sent with dry contacts etc. ③Do not wire weak-current signal lines and power lines in parallel.			
5	Photoelectric relay	A photoelectric relay malfunctioned when the inverter was operated. Inverter	1 Insert a 0.1 μF capacitor between the output common terminal of the amplifier of the photoelectric relay and a frame. Amplifier of photoelectric relay Lightemitting receiving part part	Ilf a weak-current circuit on the malfunctioning side is observed, the countermeasures may be simple and economical.			
6	Proximity limit switch (electro- static type)	A proximity limit switch malfunctioned. Power supply linverter M 24V Power Proximity limit switch <estimated cause=""> It is considered that the capacitance type proximity limit switch is susceptible to conduction and radiation noise because of its low noise immunity.</estimated>	(2) Install an LC filter on the output side of the inverter. (2) Install a capacitive filter on the input side of the inverter. (3) Ground the 0 V (common) line of the DC power supply of the proximity limit switch through a capacitor to the box body of the machine. Power supply Inverter M LC filter Supply Switch O.1 µF Box body	①Noise generated in the inverter is reduced.` ②The switch is superseded by a proximity limit switch of superior noise immunity (such as a magnetic type) .			

No.	Target device	Phenomena	Noise prevention measures	Notes		
7	Pressure sensor	A pressure sensor malfunctioned. Power Inverter M DC 24V Pressure sensor supply Shielded wire Box body <estimated cause=""> It is considered that the pressure sensor signal malfunction was due to noise that came from the box body and traveled through the shield of the shielded wire.</estimated>	① Install an LC filter on the input side of the inverter. ② Connect the shield of the shielded wire of the pressure sensor to the 0 V line (common) of the pressure sensor, changing the original connection. Power LC filter M LC filter Sensor Shielded wire Box body	The shielded parts of shield wire for sensor signals are connected to a common point in the system. Conduction noise from the inverter is reduced.		
8	Position detector (pulse generator: PG)	Erroneous-pulse outputs from a pulse converter caused a shift in the stop position of a crane. Power Inverter Curtain cable Curtain cable Curtain cable Curtain cable Pulse generator <estimated cause=""> It is considered that erroneous pulses are output by induction noise since the power line of the motor and the signal line of the PG are bundled in a lump.</estimated>	Install an LC filter and a capacitive filter on the input side of the inverter. Install an LC filter on the output side of the inverter. LC filter	This is an example of a measure where the power line and signal line cannot be separated. Induction noise and radiation noise on the output side of the inverter are reduced.		
9	Programmable logic controller (PLC)	The PLC program sometimes malfunctions. Power Inverter M Power PLC Signal source <estimated cause=""> Since the power supply system is the same for the PLC and inverter, it is considered that noise enters the PLC through the power supply.</estimated>	Install a capacitive filter and an LC filter on the input side of the inverter. Install an LC filter on the output side of the inverter. Lower the carrier frequency of the inverter. LC filter LC filter M Capacitive Filter PLC Signal source	Total conduction noise and induction noise in the electric line are reduced.		

Appendix 2. Effect on Insulation of General-purpose Motor Driven with 400V Class Inverter

Excerpt from Technical Document of the Japan Electrical Manufacturers' Association (JEMA) (March, 1995)

Appendix 2. Effect on Insulation of General-purpose Motor Driven with 400V Class Inverter

Introduction

When an inverter drives a motor, surge voltages generated by switching the inverter elements are superimposed on the inverter output voltage and applied to the motor terminals. If the surge voltages are too high they may have an effect on the motor insulation and some cases have resulted in damage.

For preventing such cases this document describes the generating mechanism of the surge voltages and countermeasures against them.

2.1 Operating principle of inverter

2.1.1 Main circuit configuration of inverter

The main circuit of an inverter is configured with a converter part and an inverter part. The former part rectifies a commercial power source voltage and eliminates resulting ripple components, and the latter part converts DC voltage to AC voltage through a 3-phase bridge circuit composed of switching elements like transistors. (Refer to Fig. 1)

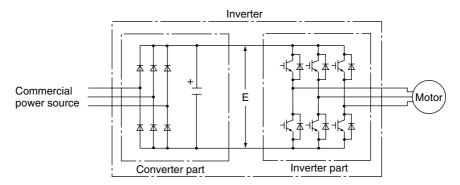


Fig. 1 Main circuit configuration of inverter

2.1.2 Control method of inverter

The PWM (Pulse Width Modulation) control is commonly adopted in general-purpose inverters. This method generates multiple switching pulses in one output cycle because both the output voltage and frequency are simultaneously controlled in the inverter part. The output voltage control is carried out by varying the pulse width while the pulse magnitude is kept constant.

The number of switching pulses generated in one second is designated as a carrier frequency and is normally high up to 0.7 to 16kHz. So transistors capable of high-speed switching (IGBT, etc.) are used for inverter elements.

2.2 Generating mechanism of surge voltages

As the inverter rectifies a commercial power source voltage and smoothes into a DC voltage, the magnitude E of the DC voltage becomes about $\sqrt{2}$ times of that of the source voltage (about 620V in case of an input voltage of 440V AC). The peak value of the output voltage is usually close to this DC voltage value.

But, as there exists inductance (L) and stray capacitance (C) in wiring between the inverter and the motor, the voltage variation due to switching the inverter elements causes a surge voltage originating in LC resonance and results in the addition of a high voltage to the motor terminals. (Refer to Fig.2)

This voltage sometimes reaches up to about twice of the inverter DC voltage ($620V \times 2 = about 1,200V$) depending on a switching speed of the inverter elements and a wiring condition.

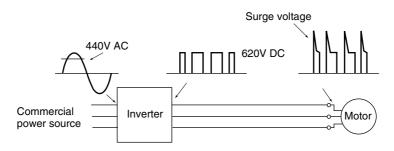
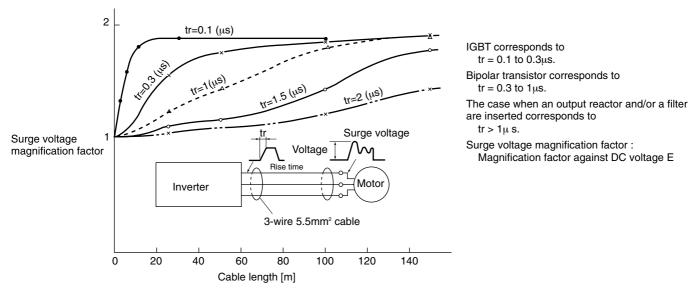


Fig. 2 Voltage wave shapes of individual positions


Chapter 8

Appendix 2. Effect on Insulation of General-purpose Motor Driven with 400V Class Inverter

A measured example in Fig. 3 illustrates relation of a peak value of the motor terminal voltage with a wiring length between the inverter and the motor.

From this it can be confirmed that the peak value of the motor terminal voltage ascends as the wiring length increases and becomes saturated at about twice of the inverter DC voltage.

Besides the shorter a pulse rise time becomes, the higher the motor terminal voltage rises even in case of a short wiring length.

Excerpt from [J. IEE Japan, Vol. 107, No. 7, 1987]

Fig. 3 Measured example of wiring length and peak value of motor terminal voltage

2.3 Effect of surge voltages

The surge voltages originating in LC resonance of wiring may be applied to the motor input terminals and depending on their magnitude sometimes cause damage to the motor insulation.

When the motor is driven with a 200V class inverter, as for dielectric strength of the insulation it is no problem that the peak value at the motor terminal voltage increases twice due to the surge voltages, since the DC voltage is only about 300V.

But in case of a 400V class inverter the DC voltage becomes about 600V and depending on wiring length the surge voltages may highly rise and sometimes result in damage to the insulation.

2.4 Countermeasures against surge voltages

The following methods are countermeasures against damage to the motor insulation by the surge voltages in case of a motor driven with a 400V class inverter.

2.4.1 Method to use motors with enhanced insulation

Enhanced insulation of a motor winding allows its surge proof strength to be improved.

2.4.2 Method to suppress surge voltages

There are two methods for suppressing the surge voltages, one is to reduce the voltage rising and another is to reduce the voltage peak value.

Appendix 2. Effect on Insulation of General-purpose Motor Driven with 400V Class Inverter

(1) Output reactor

If wiring length is relatively short the surge voltages can be suppressed by reducing the voltage rising (dv/dt) with installation of an AC reactor on the output side of the inverter. (Refer to Fig. 4 (1)) However, if the wiring length becomes long, suppressing the peak voltage due to surge voltage may be difficult.

(2) Output filter

Installing a filter on the output side of the inverter allows a peak value of the motor terminal voltage to be reduced. (Refer to Fig. 4 (2))

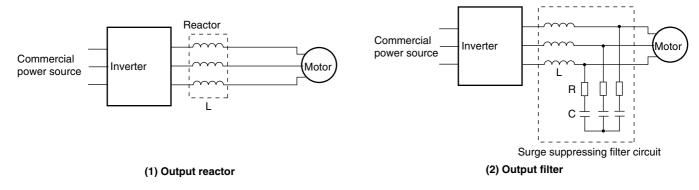


Fig. 4 Method to suppress surge voltage

2.5 Regarding existing equipment

2.5.1 In case of motor being driven with 400V class inverter

The last five years survey on motor insulation damage due to the surge voltages originating from switching of inverter elements shows that the damage incidence is 0.013% under the surge voltage condition of over 1,100V and most of the damage occurs in several months after commissioning of the inverter. Therefore there seems to be little probability of occurrence of motor insulation damage after a lapse of several months of commissioning.

2.5.2 In case of existing motor driven newly with 400V class inverter

We recommend to suppress the surge voltages with the method of 2.4.2.

Appendix 3. Example Calculation of Energy Saving

Appendix 3. Example Calculation of Energy Savings

The energy saving that results from use of an inverter is calculated based on a specific calculation result (in the case of a fan and pump). The Q-P characteristic curve corresponding to damper use in Fig. 1 changes depending on the motor capacity and manufacturer. Therefore, characteristic curves should be obtained individually when performing a detailed calculation.

2.1 Calculating condition

[Use]

· Fan for air conditioning

[Usage period]

• 250 days / year (24 hours / day)

[Reduced rate of air flow with damper]

• In accordance with general output characteristics (Q-P curve) in Fig.1

[Reducing rate of air flow with an inverter (frequency)]

• 60Hz → 40Hz

[Electric power at maximum air flow rate :Po [kW]]

P₀ = Applied motor [kW] x 1 / Motor efficiency → P₀
 = Applied motor [kW] x 1/0.9

<In a case of a motor of 37kW>

• $P_0 = 37 \times 1/0.9$ = 41.1 kW

[Power rate per 1 kWh : M₂ [US\$]]

• Suppose US\$0.04/kWh

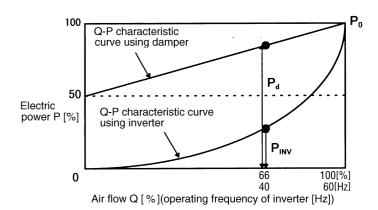


Fig.1 Q-P characteristic curve

2.2 Calculation of shaft driving power

[Shaft driving power with damper control : Pd]

Pd = $((50+50 \times (40/60))/100 \times P_0$ = $0.833 P_0 [kW]$

[Shaft driving power with inverter control: P_{INV}]

 $P_{INV} = (40/60)^3 \times P_0$ = 0.296 x $P_0[kW]$

2.3 Calculation of energy savings

A specific example of the energy savings is calculated with the following formula.

<Formula>

• $M_1 = (Pd - P_{INV}) \times T \times M_2 [US\$/year]$

where M₂: Electricity bill of the energy saving [US\$/year]

T : Operating time per year [h] M₂ : Power rate per 1 kWh [US\$]

■ Calculation example

• $M_1 = (Pd - P_{INV}) \times T \times M_2 [US\$/year]$

 $= (0.833-0.296) \times P_0 \times T \times M_2$

 $= 0.537 \times 41.1 \times (250 \times 24) \times 0.04$

= 5,297 [US\$/year]

Therefore, energy savings of approximately US\$18,500/year are obtained.

Appendix 4. Inverter Generating Loss

Inverter generating loss

Power	Nominal	Inverter type		Generating loss [W]						
supply	applied	G11S series	P11S series			series	P11S series		E11S series	
voltage	motor	☐: JE or EN		☐: JE or EN						
	[kW]					High (15kHz)				High (15kHz)
	0.1	_		FVR0.1E11S-2JE	-	-	2011 (211112)	111911 (1014112)	20	23
	0.2	FRN0.2G11S-2JE		FVR0.2E11S-2JE	25	30			27	32
		FRN0.4G11S-2JE		FVR0.4E11S-2JE	35	45			40	50
		FRN0.75G11S-2JE	_	FVR0.75E11S-2JE	50	60	-	-	60	77
	1.5	FRN1.5G11S-2JE		FVR1.5E11S-2JE	80	110			91	110
	2.2	FRN2.2G11S-2JE		FVR2.2E11S-2JE	110	140			128	165
	3.7	FRN3.7G11S-2JE		FVR3.7E11S-2JE	170	210			203	260
	5.5	FRN5.5G11S-2JE		FVR5.5E11S-2JE	240	320	210	280	231	310
Three-	7.5			FVR7.5E11S-2JE	300	415	290	370	307	415
phase	11		FRN11P11S-2JE		450	620	410	550		
200V	15		FRN15P11S-2JE		540	720	500	670 840		
	18.5 22	FRN18.5G11S-2JE FRN22G11S-2JE	FRN22P11S-2JE		670 880	890 1160	630 770	1030		
	30		FRN30P11S-2JE		1150	1400	1250	1400 *1)		
	37		FRN37P11S-2JE	_	1400	1750	1550	1700 *1)	_	_
	45		FRN45P11S-2JE		1700	2050	1800	2050 *1)		
	55		FRN55P11S-2JE		1950	2400	2100	2350 *1)		
	75		FRN75P11S-2JE		2750	3100 *1)	2800	3100 *1)		
	90		FRN90P11S-2JE		3250	3650 *1)	3350	3500 *2)		
	110	-	FRN110P11S-2JE		-	-	3950	4150 *2)		
		FRN0.4G11S-4 🗌		FVR0.4E11S-4 🗌	35	60			28	45
		FRN0.75G11S-4		FVR0.75E11S-4	45	85			41	64
	1.5	FRN1.5G11S-4	-	FVR1.5E11S-4	60	110	-	-	63	103
		FRN2.2G11S-4 (FVR2.2E11S-4	80	150			89	149
	3.7, 4.0 5.5	FRN3.7G11S-4 (*3) FRN5.5G11S-4 (FRN5.5P11S-4JE	FVR3.7E11S-4 (**5) FVR5.5E11S-4 (**)	130 170	230 300	160	290	135 161	235 289
	7.5		FRN7.5P11S-4JE	FVR7.5E11S-4	230	400	210	370	220	389
	11		FRN11P11S-4JE	1 VIII.3E110 4	300	520	300	520	220	000
	15		FRN15P11S-4JE		360	610	360	610		
			FRN18.5P11S-4JE		460	770	460	770		
	22		FRN22P11S-4JE		550	900	530	870		
	30	FRN30G11S-4 (*4)	FRN30P11S-4JE		900	1400	1100	1400 *1)		
Three-	37		FRN37P11S-4JE		1000	1700	1300	1600 *1)		
phase	45		FRN45P11S-4JE		1150	1950	1450	1900 *1)		
400V	55		FRN55P11S-4JE		1400	2300	1700	2200 *1)		
			FRN75P11S-4JE		2000	2800 *1)	2050	2700 *1)		
	90		FRN90P11S-4JE FRN110P11S-4JE		2350 2600	3250 *1) 3600 *1)	2650 2950	2950 *2) 3300 *2)		
	132		FRN132P11S-4JE	-	2950	4150 *1)	3300	3750 *2)	-	-
	160		FRN160P11S-4JE		3450	4900 *1)	3900	4450 *2)		
	200	FRN200G11S-4			3950	5750 *1)	4450	5150 *2)		
		FRN220G11S-4	=======================================		4400	6350 *1)	4950	5700 *2)		
		FRN280G11S-4			5550	8050 *1)	5800	6700 *2)		
	315	FRN315G11S-4	FRN315P11S-4JE		6250	9000 *1)	6500	7550 *2)		
	355	FRN355G11S-4JE			6950	10200 *1)	7250	8450 *2)		
	400	FRN400G11S-4 🗌			7850	11400 *1)	8250	9550 *2)		
	450		FRN450P11S-4JE		-	_	9200	10700 *2)		
	500		FRN500P11S-4JE	E) (Do 15::0 ===			10400	12100 *2)	0.	
	0.1			FVR0.1E11S-7					21	24
Single-	0.2			FVR0.2E11S-7					29 41	34 51
phase - 200V -	0.4	-	-	FVR0.4E11S-7 FVR0.75E11S-7	-	-	-	-	64	80
	1.5			FVR0.75E11S-7					101	129
	2.2			FVR2.2E11S-7					143	180

NOTES: *1) fc=10kHz

*2) fc=6kHz

*3) JE FRN3.7G11S-4JE EN ... FRN4.0G11S-4EN

*4) JE FRN30G11S-4JE EN ... FRN30G11S-4EN or FRN30G11S-4EV

*5) JE FVR3.7E11S-4JE EN ... FVR4.0E11S-4EN

MEMO

MEMO